
Communications Software

Copyright © IOPLEX Software
https://www.ioplex.com/
support@ioplex.com
Jespa 2.0.11 R726

Jespa Operator's Manual

NOTICE
The definitive documentation for Jespa can be found online here:

https://www.ioplex.com/learn/

This manual does not contain content specific to Jespa 2.1 or later.

This document describes requirements, installation and operating instructions for the Jespa Java software
library which implements a variety of security related functionality, mostly applicable to Microsoft AD DS
environments.

Table of Contents
Requirements... 2

Validating NTLM Credentials with the NETLOGON Service...3
NETLOGON and lsarpc Port Requirements...3

Proxying and Load Balancing NTLM SSO with NGINX..3
Proxying and Forwarding.. 3
Load Balancing... 4

DNS Requirements and Properties.. 4
Active Directory Sites and Services..4
DNS Properties... 5
The DNS Records File.. 6

Installation.. 7
Step 1: Create the Computer Account in AD DS..7
Alternative Step 1: Creating a Computer Account Manually...8

Setting the Password Manually using PowerShell...8
Setting the Password Manually using the SetComputerPassword.vbs Script..8

Step 2: Test the Computer account with the Example Webapp..8
Step 3. Copy Jespa Into Your Application Files..9

Upgrading... 9
Activating the Jespa Jar File... 9
Validating the Activation Key of a Jespa Jar File..10

The HttpSecurityService and HttpSecurityFilter..10
HttpSecurityService Mechanisms...10
HttpSecurityService Properties...11
An Example web.xml File.. 13
Requirements and Windows Settings for Single Sign-On (SSO)..14
Internet Options and the Local Intranet Zone..15
The Fallback Location... 15
The Excludes List.. 15
SPN and Channel Bindings (EPA)..16
Installation Step 5: Change SPN and Channel Bindings Policy..17
Installation Step 6: Set Channel Bindings Keystore or PEM Properties...17
HTTP Form Based Logins... 17
Logging Out... 18
Anonymous Access... 18
Windows Group Based Access Control..19

NtlmSecurityProvider Access Control..19
LdapSecurityProvider Access Control..19

Copyright © IOPLEX Software
http://www.ioplex.com/

1

Customizing the HttpSecurityService..20
The NtlmSecurityProvider... 20

NtlmSecurityProvider Properties...20
MSRPC TCP Transport Properties...22

The LdapSecurityProvider.. 22
LdapSecurityProvider Properties..22

The ChainSecurityProvider... 24
The HTTP Client... 25

Using NTLM Authentication with the HTTP Client..25
The SASL Client and Server... 26

Using NTLM Security with JNDI / LDAP...26
The LoginModule.. 26
Possible Issues... 27

Issue 1: The "jespa.http.HttpException: 401 Unauthorized" exception...27
Issue 2: The "Not a Type 1 Message" exception..27

Clients Other than Browsers.. 27
Issue 3: The browser will not perform automatic authentication (SSO)..28
Issue 4: The "SAM database ... does not have a computer account" exception...28
Issue 5: The "format of the specified computer name is invalid" exception..29
Issue 6: Windows SID based access control does not work as expected..29
Issue 7: The "page cannot be displayed" error using the HttpSecurityService...29
Issue 8: The "Failed to locate authority for name: EXAMPLE" error...29
Issue 9: POST data is not submitted when using the HttpSecurityService...29
Issue 10: The "Login failure: unknown user name or bad password" exception...30
Issue 11: The "account used is a Computer Account" exception..30
Issue 12: The "NetrLogonSamLogon return authenticator check failed" exception..30
Issue 13: The “java.lang.NoClassDefFoundError: jcifs/smb/...” exception..30
Issue 14: The “jespa.util.NtException: Access is denied.” exception..30
Issue 15: The “jespa.util.NtException: 0xC0000418” exception..31
Issue 16: SPN BINDINGS FAILURE and CHANNEL BINDINGS FAILURE Errors..31

Example Code.. 32
The MyHttpSecurityFilter Example..32

Setting the MyHttpSecurityFilter Encrypted Password...33
The LdapSearch Utility... 34

LdapSearch Command Examples..35
Providing NTLM Services without Active Directory...37

The MyNtlmSecurityProvider Example...37
Appendix A: How to Collect Diagnostic Information..38

Collecting a Complete Jespa Log File...38
Obtaining a Network Packet Capture..38

Requirements
The following requirements must be satisfied for the Jespa library to function as described in this document.

● Java 1.7 or later with unlimited cypto policy (Java 9+, 8u161+ or 7u171+).

● A Computer account (not a User account) must be created in Active Directory to allow the Jespa library
to perform common AD DS operations such as validating NTLMv2 credentials using SecureChannel
NETLOGON with the HttpSecurityService (or HttpSecurityFilter). This requirement is described in great
detail in other sections.

Note: Computer account passwords to NOT expire. The “Domain member: Maximum machine account password age” policy
instructs domain members to periodically submit a password change but they are NOT required to. The Jespa Computer account
will not stop functioning after the policy period.

● NTLM over HTTP cannot traverse proxies without help. See the Proxying and Load Balancing with
NGINX section and Issue 2 in the Possible Issues section.

● Windows SSPI based Single Sign-On (herein referred to as Windows built-in SSO) authentication
requires that the user is logged into a Windows device with their AD DS credentials. The target server

Copyright © IOPLEX Software
http://www.ioplex.com/

2

may also need to be added to the "Local intranet" zone of the browser client.

Validating NTLM Credentials with the NETLOGON Service

One unique feature of Jespa is it’s high quality NETLOGON secure channel implementation. The Jespa
NtlmSecurityProvider can validate NTLM credentials using the NETLOGON service on Active Directory domain
controllers just like a Windows server would. However, there are two notable requirements for using this feature:

1. A Computer account must be created for Jespa to communicate with the NETLOGON service. A regular
User account will be rejected by the NETLOGON service.

Note: This account does not, and must not, refer to an actual computer or Windows OS instance.

2. If you are using multiple instances of Jespa to validate Windows credentials, each instance will require
it's own Computer account. An instance of Jespa is defined as a ClassLoader with Jespa classes loaded
through it. Because webapps usually use their own ClassLoader, you will need to create a separate
Computer account for each webapp.

Technical Details: AD maintains state about each "computer" connected to it. That state is indexed by the NetBIOS hostname
presented to the domain controller when the NETLOGON connection is established. If multiple instances of Jespa attempt to use
the same Computer account, AD may deallocate what it thinks are redundant connections. If Jespa then tries to use one of those
deallocated connections, the "return authenticator check failed" error described in Issue 12 in the Possible Issues section will occur
(although Jespa is very good at transparently recovering from this error).

NETLOGON and lsarpc Port Requirements

MSRPC TCP transport uses the Windows end point mapper running on TCP port 135 to determine the ports of
various services such as NETLOGON or lsarpc. If Jespa must communicate with domain controllers through a
firewall, you may need to investigate precisely which ports are being used and open them accordingly.

Amazon AWS documentation for EC2 hosted domain controllers list the port ranges for the “NetLogonR” service
as 49152 – 65535.

To determine which specific ports are actually being used, you can set the property log.level = 4 and then
search the log output for “MsrpcEpmMap” for entries like the following:

MsrpcEpmMap: ncacn_ip_tcp:10.9.8.70[netlogon] maps to port: 49670
...
MsrpcEpmMap: ncacn_ip_tcp:10.9.8.70[lsarpc] maps to port: 49670

Proxying and Load Balancing NTLM SSO with NGINX
NTLM over HTTP cannot traverse proxies without help. For the Jespa HttpSecurityService this means adding a
directive to the proxy configuration to set a Jespa-Connection-Id header to a value that includes the remote IP
and port of the client. The HSS can use this value to map each request to the correct security context.

The examples that follow use the Jespa-Connection-Id header with NGINX to proxy, forward and load balance
traffic to Jespa instances. Any proxy that supports setting a header to the client’s remote IP and port such as
Apache or IIS should work as well.

Proxying and Forwarding

To proxy or forward requests to Jespa through NGINX, use nginx.conf directives like the following:

server {
 location / {
 proxy_pass http://localhost:8080;
 proxy_http_version 1.1;

Copyright © IOPLEX Software
http://www.ioplex.com/

3

 proxy_set_header Connection "";
 proxy_set_header Jespa-Connection-Id $remote_addr:$remote_port;
 }
}

The proxy_http_version and Connection header enable connection caching. Otherwise, set the Jespa-
Connection-Id header to the remote IP and port of the client. This is a good configuration for off-loading TLS and
unprotected static content.

Note: This Jespa-Connection-Id method does not require persistent TCP connections (Keep-Alive) or HTTP 1.1 between
NGINX and Jespa. A valid Jespa-Connection-Id is all that is needed to map each request to the correct security context.

Load Balancing

Load balancing to any number of Jespa instances is also easy with NGINX using nginx.conf directives like the
following:

upstream backend {
 ip_hash;

 server localhost:8080;
 server localhost:8081;

 keepalive 16;
}
server {
 location / {
 proxy_pass http://backend;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_set_header Jespa-Connection-Id $remote_addr:$remote_port;
 }
}

The ip_hash directive ensures that clients with the same IP are directed to the same backend server (localhost
was used in this example just for testing everything on one machine – use remote server IPs in production).

Note: NGINX Plus has an “ntlm” directive that should also work. However, for Jepsa, using the Jespa-Connection-Id
method will be more efficient because it does not require creating tables of connections for each client.

DNS Requirements and Properties
Just like Windows servers, Jespa uses DNS SRV lookups to locate AD DS services to provide fault-tolerance
and simplify configuration.

The specific queries are SRV lookups for names that look like the following:

_ldap._tcp.dc._msdcs.EXAMPLE.COM
 or
_ldap._tcp.Paris._sites.dc._msdcs.EXAMPLE.COM

where “EXAMPLE.COM” is the qualified DNS domain name in which AD DS servers are to be located and, in
the second example, “Paris” is the AD Sites & Services "site" that the web server is in.

Note: Even though these names begin with _ldap, Jespa does not use LDAP at all for SSO. It uses MSRPC.

Active Directory Sites and Services

AD Sites & Services are used to geographically partition domain controllers in WAN environments where
network communication with distant locations may be relatively slow or restricted. If you use AD Sites &
Services, failing to set the dns.site property described below may result in poor performance or failure.

Copyright © IOPLEX Software
http://www.ioplex.com/

4

Note: The Jespa Setup Wizard will attempt to retrieve the AD Sites & Service site name for the machine on which it runs
and will display it with the other Jespa configuration properties if the wizard completes successfully. Otherwise, if you
cannot run the Jespa Setup Wizard on a machine with close network proximity to the server that will be running Jespa,
ask your your network administrator if AD Sites & Services is being used and precisely what the “site name” is for domain
controllers with good connectivity to your web service.

Note: It is not uncommon for users to report connectivity issues (usually in the form of timeouts) that are completely
resolved after setting the dns.site property correctly.

DNS Properties

The behavior of most Jespa components is controlled by maps of key-value properties. The following is a table
of properties used by Jespa to control DNS behavior.

Note: When entering properties into a properties file of a Jespa component like the HttpSecurityFilter or into a web.xml
file, property names MUST to be prefixed with "jespa." like "jespa.dns.servers" and not just "dns.servers".

Name Description Example

dns.servers A comma separated list of IP addresses indicating
the Microsoft DNS servers that Jespa should use.

If multiple DNS servers are supplied and the
currently selected DNS server fails to respond,
Jespa will transparently fail-over to the next server.
If a response to a query is not satisfied by any
server in the list, an exception will occur indicating
the last error (most likely a timeout).

If this property is not supplied, the default DNS
server used by the JVM will be used but failover will
not be performed. It is better to always set this
property.

Use the ipconfig /all command on the
commandline of a Windows server or workstation in
the target domain to determine a suitable value for
this property.

192.168.10.10,192.168.20.20

dns.site The AD Sites & Services "site" representing the
geolocation of the Jespa instance. See description
above.

Paris

dns.records.path The path to a file containing DNS records used to
pre-populate the DNS cache. See The DNS
Records File section below.

Note that each backslash in Java properties file
must be escaped with an additional backslash.

C:\tomcat\webapps\example\WEB-INF\
dns.txt

dns.cache.ttl The number of milliseconds that DNS responses
are cached. The default value is 5000 ms.

60000

dns.jndifactory.classname Specifies the java.naming.factory.initial
property value used by the Jespa DNS routines.
There is no default value for this property. The
default behavior is to allow JNDI to select a suitable
DNS factory class.

com.sun.jndi.dns.DnsContextFactory

authority.dns.names.resolve If set to false, this disables DNS SRV lookups used
to resolve the "bindstr" property in which case the
bindstr MUST be set to a fully qualified DNS
hostname and not a domain name.

false

authority.dns.names.resolve
.sld

If set to true, this enables single-label domain name
lookups. The default value is false because single-
label DNS domain names are deprecated in AD
DS.

true

Copyright © IOPLEX Software
http://www.ioplex.com/

5

The DNS Records File

Jespa supports bypassing DNS queries using a DNS records file. This can be useful for restricting Jespa to a
specific subset of domain controllers such as for navigating firewalls and for debugging purposes. An example of
this file follows:

Rotate through only dc1, dc2 and dc3
_ldap._tcp.dc._msdcs.EXAMPLE.COM SRV 0 100 389 dc1.example.com
_ldap._tcp.dc._msdcs.EXAMPLE.COM SRV 0 100 389 dc2.example.com
_ldap._tcp.dc._msdcs.EXAMPLE.COM SRV 0 100 389 dc3.example.com

If the above DNS records file is supplied with the dns.records.path property, DNS SRV lookups for the name
_ldap._tcp.dc._msdcs.EXAMPLE.COM will be bypassed and the data supplied in the file will be used instead.

Note: The above example assumes that AD Sites & Services is not being used. If it is and the dns.site property was set to
“Paris”, the "Paris._sites." components of the record names would have to be included for the records to match.

The format of each record is always the name, type and then data that depends on the record type separated by
one or more spaces. Currently only SRV and A records are supported.

Note: Tabs are not supported. All fields must be separated by only spaces.

The data for SRV records is priority, weight, port and target. The data for A records is simply the dot-quad IP
address of the host. This is the same format as DNS zone transfer files.

Note: If the DNS records file is modified, it will automatically be reloaded within 5 seconds.

As illustrated by the example above, multiple records can have the same name. In this case, the Jespa DNS
logic will rotate through the records each time the name is queried.

Copyright © IOPLEX Software
http://www.ioplex.com/

6

NOTICE
The definitive documentation for Jespa can be found online here:

https://www.ioplex.com/learn/

Most of this section applies only to pre-Jespa 2.1 installations.

Installation
To authenticate clients using Windows built-in SSO, such as with the HttpSecurityService (or HttpSecurityFilter),
a Computer account must be created in AD DS with a known password as described in this section.

Note: Only a Computer account can validate NTLM credentials with the NETLOGON service on AD DS domain
controllers. The NETLOGON service will reject a regular User account (with the error described in Issue 4 in the Possible
Issues section).

Step 1: Create the Computer Account in AD DS

As a domain Administrator, double-click on the SetupWizard.vbs file from the Jespa package.

Note: The Jespa Setup Wizard will NOT modify your AD schema or do anything other than create a Computer object with
the specified DN and set it's password. If you do not want to run a VBS script as Administrator, see the Alternative Step
1: Creating a Computer Account Manually section.

Note: We recommend that you run SetupWizard.vbs from a host with close network proximity to the machine that will be
hosting Jespa so that the wizard can query the host for configuration properties specific to the target network. Windows
Server security policies may prevent SetupWizard.vbs from running successfully in which case a conventional workstation
might be used.

The Jespa Setup Wizard will step through creating a new Computer account, set it's password and, if
successful, display Jespa configuration properties corresponding to the account just created.

Note: The Jespa Setup Wizard must be executed by either Administrator or a user with permissions sufficient to create
the account and set it's password.

Note: When prompted for a DNS hostname of a domain controller, we recommend entering a specific domain controller
as opposed to a DNS domain name to reduce the possibility of replication delay issues. The bindstr property can be
changed to just the domain name later to provide proper fault tolerance.

Setup Wizard should launch notepad.exe with configuration properties that correspond to the Computer account
just created. Consider the following example output:

Generated by the Jespa Setup Wizard from IOPLEX Software

jespa.bindstr = dc100.example.com
jespa.dns.servers = 192.168.44.110,192.168.22.115
jespa.dns.site = Paris
jespa.service.acctname = jespa1$@example.com
jespa.service.password = cav-22^bim.33~kip+92$

These configuration properties can be copied directly into the HttpSecurityService properties file.

Note: If you receive an error "The specified domain either does not exist or could not be contacted", this indicates that the
machine running the Jespa Setup Wizard does not have access to a suitable domain (such as because the machine is
not joined to an AD DS domain).

Note: If you receive an error "The object already exists", this indicates that a Computer account with the same name
already exists. Choose a different name.

Note: The SetupWizard.vbs script requires that the LICENSE.txt file is in the same directory. It needs this file to display
the EULA.

Copyright © IOPLEX Software
http://www.ioplex.com/

7

Alternative Step 1: Creating a Computer Account Manually

To create the Jespa Computer account manually, use whichever utility you prefer to create a new Computer
account object such the Active Directory Users and Computers MMC Snap-In. The name of the account should
be no more than 15 characters consisting of only the characters A-Z, a-z, 0-9, hyphen (-) and underscore (_).

Note: If you need to create multiple accounts, use a common prefix for all of them if possible. This might help later with
certain security policy settings (see Issue 15 in the Possible Issues section for an example).

Setting the Password Manually using PowerShell

If you have access to a machine with the addsadministration PowerShell module installed (usually only
servers), you can set the Computer account password with a PowerShell command with the Computer account
name (with the $ sign) like:

PS C:\Users\Administrator> Set-ADAccountPassword -Reset -Identity jespa1$
Please enter the desired password for 'CN=jespa1,CN=Computers,DC=example,DC=com'
Password: *****************
Repeat Password: *****************

IMPORTANT: Password length should be NO LESS than 20 characters and consist of at least three of
the four character classes (upper, lower, digits and meta).

Note: Computer account passwords to NOT expire. The “Domain member: Maximum machine account password age”
policy instructs domain members to periodically submit a password change but they are NOT required to. The Jespa
Computer account will not stop functioning after the policy period.

Setting the Password Manually using the SetComputerPassword.vbs Script

Alternatively you can set the Computer account password with the included SetComputerPassword.vbs script
which should work without any special PowerShell modules. Simply start a command prompt and run the
following command:

C:\temp\jespa-2.0.0>SetComputerPassword jespa1$@example.com cav-22^bim.33~kip+92$
 Must have the $ sign!^

IMPORTANT: Password length should be NO LESS than 20 characters and consist of at least three of
the four character classes (upper, lower, digits and meta).

Note: This VBScript does NOT do anything other than set the password on the named Computer account.

Note: To run the above command, the operator will need to be logged in as Administrator or a user with permissions
sufficient to set the password on a Computer account.

This account can now be used with Jespa components such as the HttpSecurityFilter as described in Step 2.

Step 2: Test the Computer account with the Example Webapp

If you have an HTTP Servlet container available, the best way to test the Jespa Computer account and
installation is to enable and exercise the example webapp.

Note: This step is not required. However if you encounter an issue, it may be more easily diagnosed and resolved if you
can test your configuration with the relatively simple example webapp.

To install the example webapp do the following:

1. Copy the examples/jespa/ directory into your servlet container webapps directory (or soft link to it).

2. Place the jespa-jakarta-2.0.0.jar (or jespa-2.0.0.jar if you’re using a Java EE application server) into
jespa/WEB-INF/lib/.

3. Edit jespa/WEB-INF/example.prp and replace the properties with those generated in Step 1. See
The HttpSecurityService and HttpSecurityFilter and The NtlmSecurityProvider Properties sections for

Copyright © IOPLEX Software
http://www.ioplex.com/

8

detailed descriptions of what the various properties do.

4. Restart the Servlet container and visit the jespa/index.jsp resource.

If the Jespa successfully authenticates the user, the webapp will display the user’s identity with links to exercise
functionality of the HttpSecurityService and underlying security provider.

Note: If you get a password dialog at this point, you probably need to add the target hostname in Internet Options on the
client (search for and run inetcpl.cpl) as detailed in the Requirements and Windows Settings for Single Sign-On
(SSO) section.

If anything does not work as expected, set the property jespa.log.level = 4 and jespa.log.path to an
appropriate location and monitor the log file while you try the webapp.

For maximum security, see the additional installation steps in the SPN and Channel Bindings (EPA) section.

Note: If you get a "SAM database ... does not have a computer account" exception at this point, there is something wrong
with the Computer account created in Step 1. See the Possible Issues: Issue 4 section for details.

Step 3. Copy Jespa Into Your Application Files

If the example webapp works as expected, copy the working web.xml directives, the Jespa properties file (or
incorporate the properties directly into the web.xml) and Jespa jar file into your project files and test Jespa with
your application. For other components like the SASL server or client, JAAS LoginModule or similar, simply copy
the Jespa jar file into your project and invoke the code with the appropriate properties.

Upgrading
To upgrade a Jespa installation, download the latest Jespa package from the IOPLEX website and "activate" the
jar with your purchased activation key file.

Activating the Jespa Jar File

Before you can deploy the Jespa jar file, the jespa/license.key resource within it must be updated with your
purchased activation key file. The default jespa/license.key is the trial key which will expire after 60 days.

To update the jespa/license.key resource, unzip the Jespa package containing the desired jar. Start a command
shell and run the following command.

Note: The below command should be typed in one line.

$ cd /path/to/jespa-2.0.0
$ java -cp jespa-jakarta-2.0.0.jar jespa.License -u
jespa_premium_license_examplecom_SN2311320210111.key<enter>
License of this jar:
Jespa license.key decrypted successfully:
serialNumber: [SN2314220220504]
 userLimit: [0]
 groupLimit: [0]
 expiration: [Sat Jul 23 20:16:43 EDT 2022]
 description: [Jespa 60 Day Trial Licensing Key]
Supplied key file:
Jespa license.key decrypted successfully:
serialNumber: [SN2311320210111]
 userLimit: [0]
 groupLimit: [0]
 expiration: [0]
 description: [Jespa Premium License Key: 10 inst at "example.com"]
Update this jar with supplied key file? 'Y': y
jespa/license.key resource updated: 444 bytes
Deleting /path/to/jespa-2.0.0/jespa-jakarta-2.0.0.jar and overwriting with
/tmp/jespa_7143269194982998868.tmp

Copyright © IOPLEX Software
http://www.ioplex.com/

9

License updated successfully
$

Note: If you get a “Failed to decrypt license key” error, this likely means that your activation key is too old for the particular
version of Jespa that you are trying to use. You can either use your existing key with a previous version of Jespa or
purchase a new key. Or, it is also possible that the key file is corrupted.

Note: The Jespa activation key file is simply stored within the jar file as the "jespa/license.key" resource. Jar resources
can be updated using the jar or zip commands or by using the java.util.zip.* classes.

If the command is successful, the jar has been activated and may now be copied to the number of installations
permitted by your purchased activation key.

Validating the Activation Key of a Jespa Jar File

You can validate the activation key of any Jespa jar file with a command like the following:

$ java -cp jespa-jakarta-2.0.0.jar jespa.License
License of this jar:
Jespa license.key decrypted successfully:
serialNumber: [SN2311320210111]
 userLimit: [0]
 groupLimit: [0]
 expiration: [0]
 description: [Jespa Premium License Key: 10 inst at "example.com"]

The HttpSecurityService and HttpSecurityFilter
The HttpSecurityService component can be used to perform advanced multi-mechanism HTTP authentication
and authorization. The HttpSecurityFilter implements the standard Servlet Filter interface around the
HttpSecurityService and provides an easy path for existing applications to implement Windows built-in SSO.

Note: The Installation section of this manual describes how to use the HttpSecurityFilter to implement SSO with the Jespa
example webapp.

If the client is successfully authenticated either by SSO, by browser password dialog or by a form-based login,
the HttpSecurityService will insert a custom HttpServletRequest that overrides getRemoteUser, getUserInRole,
etc. See the HttpSecurityService API documentation for details.

HttpSecurityService Mechanisms

The mechanisms used by the HttpSecurityService are defined by the previously described security providers.
The following is a summary of which security providers can be used with the HttpSecurityService and what
mechanism functionality they provide.

Security Provider HttpSecurityService Mechanism Functionality

NtlmSecurityProvider Provides HTTP NTLM authentication including Windows built-in SSO. Most browsers including
Edge, Chrome and Firefox can perform this type of “built-in” SSO. If for some reason SSO cannot
be performed (such as because the client is not logged into an AD DS domain), the browser will
present the user with a password dialog.

LdapSecurityProvider Provides explicit login authentication using the traditional LDAP bind method (LDAP cannot be
used to implement true SSO). This security provider may be used to authenticate HTTP clients
against AD DS or an RFC-based LDAP server such as OpenLDAP.

ChainSecurityProvider A special wrapper around a "chain" of other security providers. This may be used to authenticate
HTTP clients against multiple independent authorities at the same time (although only the first
element in the chain can do SSO). If authentication is successful, the ChainSecurityProvider will
act as an intelligent proxy to the successful provider for the duration of the client's HTTP session.

Note: Always restart client browsers if you change your configuration to use a different mechanism. Otherwise, the

Copyright © IOPLEX Software
http://www.ioplex.com/

10

browser could cache state that is not applicable to the new mechanism resulting in errant behavior.

For a more consistent site appearance and user experience, the HttpSecurityService may be configured to
perform HTML form based logins. It also supports group based access control, anonymous access and other
features that are described in detail in the sections that follow.

Note: If you are forwarding requests through another web server like NGINX, see the Proxying and Load Balancing with
NGINX section for important information.

Note: Once a browser has performed NTLM HTTP authentication with a server, it can proactively re-authenticate POST
requests. This means that you may not be able to selectively filter only some content on a server because the browser
may try to authenticate for content that is not protected by the filter and therefore is not prepared to handle the
authentication. Ultimately, it is strongly recommend that <url-pattern>/*</url-pattern> is used with excludes to
selectively exclude certain resources (described below).

Note: If you want to selectively disable the HttpSecurityService, such as because you need to use an alternative
authentication mechanism you will need to use the Anonymous Access feature to allow the request to pass through
without being authenticated.

HttpSecurityService Properties

Like all Jespa components, the HttpSecurityService is controlled using properties. The following table
summarizes properties which will be described in more detail in the sections that follow.

Note: Backslashes in Java properties files, such as in path names and qualified group names, must be escaped with an
additional backslash.

Note: Setting any of the http.parameter.* properties will cause the request input stream to be read which may not be
compatible with certain request processing such as REST services.

Name Description Example Value

provider.classname The name of a jespa.security.SecurityProvider class that the
HttpSecurityService should use to perform authentication
and any other security functions.

jespa.ntlm.NtlmSecurityPr
ovider

properties.path A path relative to the web-app root from which properties
should be loaded. Properties loaded from a properties file
will override any properties supplied directly to the
HttpSecurityService constructor (such as those specified
with web.xml init-params when using the HttpSecurityFilter).

Note: Property values that begin with file:// will be interpreted
as an absolute path relative to the root of the host operating
system (regardless of whether or not the application is
packaged within a WAR file). Meaning property values like
file://H:/myapp/ntlm.prp or
file:///s1.busicorp.local/dev/myapp/ntlm.prp should work.

/WEB-INF/example_ntlm.prp

fallback.location An absolute path or URL that the client should be redirected
to if they are denied access or an authentication protocol
error occurs. See The Fallback Location section below for
details. This resource MUST also be in the excludes list or
the client will not be able to access it.

/jespa/Login.jsp

excludes A comma separated list of paths relative to the webapp base
that are excluded from protection by the
HttpSecurityService. See The Excludes List section below
for details.

/Login.jsp,/support.html

http.parameter.username.name The name of the username HTTP request parameter used
for form based logins. See the HTTP Form Based Logins
section below for details.

username

http.parameter.password.name The name of the password HTTP request parameter used
for form based logins. See the HTTP Form Based Logins
section below for details.

password

http.parameter.logout.name The name of the logout HTTP request parameter that logout

Copyright © IOPLEX Software
http://www.ioplex.com/

11

triggers security provider HTTP session state to be removed
(this has no effect on the HTTP session itself). See the
Logging Out section below for details.

http.parameter.anonymous.name The name of the anonymous HTTP request parameter used
to bypass authentication. See the Anonymous Access
section below for details.

anon

groups.allowed A comma separated list of SecurityProvider specific group or
account names that identify clients who are permitted
access through the HttpSecurityService. If this parameter is
not set, all users will be allowed access. See the Group
Based Access Control section below for details.

EXAMPLE\Domain Admins,
EXAMPLE\Engineers

groups.denied A comma separated list of SecurityProvider specific group or
account names that identify clients who are to be denied
access. This list is checked before the groups.allowed list.
See the Group Based Access Control section below for
details.

EXAMPLE\Sales,
abaker@example.com

jespa.log.path Specify a log file for debugging purposes (for Windows this
might be C:\tmp\jespa.log). If no log file is specified, the
default log stream is System.err.

/tmp/jespa.log

jespa.log.level Use level 3 or higher for debugging purposes only. If no log
level is specified, the default is 1. IMPORTANT: Setting this
value higher than 3 will greatly increase the size of the log
file and limit performance.

2

bindings.targetSpns.policy Controls how the HSS behaves if the client does not submit
a valid SPN. Possible values are:

0 - Disabled. No SPN checking is performed.
1 - Allowed (default). SPNs are checked but clients will not
be rejected. The result is logged with log.level = 2 or higher.
2 - Required, SPNs must match an SPN in the
bindings.targetSpns list or an SPN created from
SubjectAltName entries in the server TLS certificate if any. If
the client did not provide a matching SPN, the HSS will
return 401 Unauthorized.

See the SPN and Channel Bindings (EPA) section below
and the HttpSecurityService API documentation for details.

2

bindings.targetSpns A comma separated list of SPNs that this server accepts. An
SPN is a scheme and host like HTTP/www.example.com
(the scheme is always HTTP even if TLS is being used). If
TLS is being used (it should be) and the server certificate
has dNSName or iPAddress SubjectAltName entries (it
should), they will be used to generate SPNs automatically in
which case it should not be necessary to set this property at
all (but it can be set to add additional SPNs).

HTTP/as5.example.com,
HTTP/10.2.3.4

bindings.cert.hash.policy Controls how the HSS behaves if the client does not submit
valid channel bindings. Possible values are:

0 - Disabled. No channel bindings checking is performed.
1 - Allowed. Channel bindings are checked but clients will
not be rejected. The result is logged with log.level = 2 or
higher.
2 - Required. The client must submit channel bindings as
specified by the bindings.cert.* properties. If the client
did not provide matching channel bindings, the HSS will
return 401 Unauthorized.

See the SPN and Channel Bindings (EPA) section below
and the HttpSecurityService API documentation for details.

2

bindings.cert.hash Explicitly sets the channel bindings hash to a specific value
in hex. If this property is set, all other bindings.cert.*
properties will be ignored. Values for this property may be

531B8FFAC96ED512AD94EAB36
87658A3

Copyright © IOPLEX Software
http://www.ioplex.com/

12

observed in the Jespa log file (although if a MITM attack was
affected the value could be incorrect).

bindings.cert.keystore.path The path to the keystore file containing the certificate from
which to calculate the channel bindings hash. If this property
is not set, the HSS will not use a keystore and all other
bindings.cert.keystore.* properties will be ignored.

etc/alma92as5.p12

bindings.cert.keystore.type The type of the keystore containing the certificate from which
to calculate the channel bindings hash. The default value is
PKCS12.

JKS

bindings.cert.keystore.provider The provider of the keystore containing the certificate from
which to calculate the channel bindings hash. The default
value is SunJSSE.

SUN

bindings.cert.keystore.password The password of the keystore containing the certificate from
which to calculate the channel bindings hash. If a password
is not required, do not set this property at all (which is not
equivalent to an empty value).

alma92as5

bindings.cert.pem.path The path to a PEM file containing the PEM encoded
certificate from which to calculate the channel bindings hash.
If the file contains multiple certificates, the first certificate
with an extended key usage of serverAuth will be used.

etc/alma92as5.pem

bindings.cert.pem The PEM encoded certificate from which to calculate the
channel bindings hash. Linebreaks will be ignored so that
the entire certificate can be set on one line such as within a
properties file.

-----BEGIN
CERTIFICATE-----
MIICmDC...77txZ2sZ8=-----
END CERTIFICATE-----

bindings.cert.url An HTTPS URL serving the certificate from which to
calculate the channel bindings hash. If other
bindings.cert.* properties are not set, the HSS will
query this URL (using a "dummy" TLS trust manager) to
retrieve the server certificate and calculate the channel
bindings hash.

Note: While using only this property is convenient, it is not
the most secure option. If a MITM attack occurs when the
channel bindings are initialized, the incorrect hash could be
generated. Properly secured installations should use the
bindings.cert.keystore.* or bindings.cert.pem*
properties instead.

If this value is not set, the value returned by
HttpServletRequest.getRequestURL().toString(
) will be used (but only once each time the HSS is
(re)initialized).

https://ext2.example.com

If the HttpSecurityService is being use through the HttpSecurityFilter, these properties and the properties of the
SecurityProvider being used, may be set using standard init-params in the web.xml or by using a properties file.
If both methods are used, properties loaded from the properties.path file will override any init-params with the
same name.

An Example web.xml File

The following example web.xml enables the Jespa HttpSecurityFilter component and uses the
properties.path property to indicate that properties should also be loaded from the named file.

Note: The following web.xml and .prp files are also located in the examples/jespa/WEB-INF directory.

<?xml version="1.0" encoding="UTF-8"?>

Copyright © IOPLEX Software
http://www.ioplex.com/

13

<web-app
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

 <display-name>Jespa Examples</display-name>

 <filter>
 <filter-name>HttpSecurityFilter</filter-name>
 <filter-class>jespa.http.HttpSecurityFilter</filter-class>
 <init-param>
 <param-name>properties.path</param-name>
 <param-value>WEB-INF/example.prp</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>HttpSecurityFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

The following is an example of what the WEB-INF/example.prp file might contain:

HttpSecurityService properties
http.parameter.username.name = username
http.parameter.password.name = password
http.parameter.logout.name = logout
#http.parameter.anonymous.name = anon
fallback.location = /jespa/Login.jsp
excludes = /Login.jsp
#groups.allowed = BUSICORP\\Example Users

Require SPN and Channel Bindings (EPA)
bindings.targetSpns.policy = 2
bindings.cert.hash.policy = 2

SecurityProvider properties
jespa.log.path = /tmp/jespa.log
jespa.log.level = 4
jespa.account.canonicalForm = 3

jespa.bindstr = dc100.busicorp.local
jespa.dns.servers = 192.168.44.110,192.168.22.115
jespa.dns.site = Paris
jespa.service.acctname = jespa1$@busicorp.local
jespa.service.password = cav-22^bim.33~kip+92$

The HttpSecurityService properties in the above properties file are described in the following sections. Any
property prefixed with "jespa." will be passed through to the provider specified with the provider.classname
property. Most of the provider properties shown above can be derived from the output of the Jespa
SetupWizard.vbs script by simply prefixing each property with "jespa.".

Note: Modifications to the properties.path file do not require reloading the webapp. The file will be automatically reloaded
within 5 seconds after being modified (although you might need to restart the browser being used to test the changes).

Requirements and Windows Settings for Single Sign-On (SSO)

To achieve the truly password-free experience provided by Windows built-in SSO, the following requirements
and settings are required (otherwise the user will be presented with the network password dialog):

1. The target hostname must be added to the "Local intranet" security zone. The target hostname is the

Copyright © IOPLEX Software
http://www.ioplex.com/

14

http://xmlns.jcp.org/xml/ns/javaee

hostname portion of URL in the address bar of the browser. This is described further in the next section.

2. The user must be logged into the workstation using their AD DS credentials.

Note: Of course this condition can only be satisfied if the OS is Windows. If the user is not logged into a domain
or if the OS is Mac or Linux, the password dialog will be presented.

3. The browser must support Windows built-on SSO authentication. Most browsers including Edge,
Chrome and Firefox running on a Windows OS just call into the Windows SSPI and therefore fully
support Windows built-in SSO.

4. The URL used to visit the site may need to be a fully qualified DNS hostname or NetBIOS name. The
special "localhost" name or an IP address1 may not work as expected.

Internet Options and the Local Intranet Zone

For Windows clients to initiate SSO, the hostname or URL prefix of the target server will need to be added to the
"Local intranet" zone settings of all clients. Search for and run inetcpl.cpl or Internet Settings to
launch the Internet Options dialog. Select Security > Local intranet > Sites > Advanced. Add the target site (or a
wildcard expression that matches the target site) to this list. Some examples of values for this list are:

https://www.example.com Trust one specific site for SSO using HTTPS only (recommended form)

www.example.com Trust the specific site using either HTTP or HTTPS.

*.example.com Trust all sites under the example.com domain.

Note: In a large organization, these settings are usually applied using a global policy object setting (GPO). The exact
procedure for this has changed with each major revision of Windows Server and therefore is not detailed here.

The Fallback Location

The HttpSecurityService can redirect clients to a "fallback location" if the browser does not support Windows
built-on SSO or if the user clicks "Cancel" on the password dialog. To enable this feature, add the following
property to the properties file or filter section but with a value referencing your login page:

fallback.location = /jespa/Login.jsp

IMPORTANT: The fallback location resource MUST ALSO be added to the excludes property (described in the next
section). Although consider that excludes are referenced to the webapp base and not the resource path and therefore
may be different (in the Jespa example webapp, the excludes property is excludes = /Login.jsp).

This value is ultimately used to set the window.location JavaScript property on the client (the value is not
escaped).

Any application that will be used by an actual person should probably have this property set. If it is not set and
and authentication fails for any reason, the client will receive a cryptic 401 Unauthorized or 403 Forbidden HTTP
response.

The Excludes List

It is almost always necessary to exclude certain paths from protection by the HttpSecurityService. For example,
it must not be necessary to authenticate a client trying to access a login form.

Caution: The paths listed in the excludes list will be completely unprotected.

The excludes property is a comma separated list of absolute paths relative to the webapp root.

Excludes may contain DOS-style wildcard expressions uisng * to match zero or more characters (and ? for one
of any character). Note that the expression is applied to the entire path and not components of paths. See below

1 An IP address should work if the IP is added to the browser's "Local intrAnet" as though it were a hostname and the Subject Alternative
Name of the TLS certificate has a matching IP address entry.

Copyright © IOPLEX Software
http://www.ioplex.com/

15

for examples.

Consider the following example:

excludes = /account/login,/error.html,/images/*.jpg

In the above example, if a client tries to access the target /account/login, it will not be challenged to
authenticate.

Note: Paths with literal commas must be quoted and paths. Quotes must be quoted with literal quotes escaped by an
additional quote (same as CSV format). See the HttpSecurityService API documentation for details.

Note: Request paths do NOT include key value "QUERY_STRING" parameters. For example, a request for a path like
/controller?action=login will NOT match an exclude like "*action=login*" (because this part of the resource is for
parameters and are in fact not part of the path). To exclude a request based on QUERY_STRING parameters, it would be
necessary to write code and extend the HttpSecurityService to override the isProtected method. See the
jespa.http.HttpSecurityService API documentation for details.

Note: The excludes list will not stop the browser from pro-actively initiating authentication such as because it previously
authenticated when accessing a different resource not in the excludes list. The excludes list simply stops the
HttpSecurityService from challenging the client to perform authentication. This is why the url-pattern directive in the
web.xml must be “/*”.

The following are some examples of exclude values (including wildcard expressions):

Exclude Value / Expression Path Requested Result Excluded?

/css/style.css /css/style.css true - the path matches exactly and therefore it is excluded from authentication

/css/Style.css /css/style.css false - capital S does not match and therefore the client will be challenged for
auth

/css/style.css0 /css/style.css false - zero at end does not match

/css/*.css /css/style.css true - matches wildcard expression

/css/*.css /prod/style.css false - prefix does not match

/account/login /account/login true - the path matches exactly

/account/login /account/Login false - the capitol L does not match

/account/* /account/abaker true - the wildcard matches

/error* /errors/40x.html true - the wildcard matches

*.css /css/style.css true - ends with .css

*.css /tmp/.css true - ends with .css (does not matter that previous character is path separator)

style.css /css/style.css false - prefix does not match

*style.css /css/style.css true - suffix matches

*style.css /css/astyle.css true - suffix still matches

*/style.css /css/astyle.css false - suffix does not match

data?????.dat /data12345.dat true - question marks mean one character matches

data?????.dat /data123.dat false - not five characters followed by .dat

data*.dat /data123.dat true - matches wildcard

da?a.dat /data.dat true - letter t matches question mark

da??a.dat /data.dat false - not two characters followed by suffix

SPN and Channel Bindings (EPA)

SPN and channel bindings, which Microsoft calls Extended Protection for Authentication (EPA), are security
features that stop relay attacks and MITM attacks.

Copyright © IOPLEX Software
http://www.ioplex.com/

16

As of Jespa 2.0, the default policy for this feature is to allow clients that do not provide valid bindings. It is
recommended that you fully enable this feature by performing two additional installation steps:

Installation Step 5: Change SPN and Channel Bindings Policy

The HttpSecurityService will automatically attempt to retrieve and use the server TLS certificate to generate
SPNs and compute channel bindings. The first TLS request submitted after the server starts should generate log
entries (with log.level >= 3) like:

EXAMPLE\bcarter successfully authenticated
Loading bindings certificate from URL: https://alma92as5.example.com:8443/jespa/
Computed bindings.cert.hash: 531B8FFCA96ED512AD94AEB3687658A3
Inserted SPNs from X509Certificate: bindings.targetSpns=[HTTP/alma92as5.example.com,
HTTP/alma92as5, HTTP/10.11.12.13:8443, HTTP/alma92as5.example.com:8443, HTTP/alma92as5:8443,
HTTP/10.11.12.13]
targetSpn submitted and matched: HTTP/alma92as5.example.com:8443
bindings.cert.hash submitted and matched

If all clients generate both “submitted and matched” log entries, this indicates that SPN and channel bindings
checking is working and that you can safely set properties to require that clients provide valid SPN and channel
bindings like:

Require SPN and Channel Bindings (EPA)
bindings.targetSpns.policy = 2
bindings.cert.hash.policy = 2

Note: When proxying requests through another server like NGINX, the default SPNs will likely be incorrect because the
port used by clients will not be the same as the port seen by the HSS. In this case, it will be necessary to explicitly add the
correct SPN(s) using the bindings.targetSpns property.

Note: If you are not using TLS, you should still set the bindings.targetSpns* properties and fully enable SPN checking but
you will need to explicitly set the list of SPNs.

Note: The curl program is known to not submit an SPN when using NTLM (although it does submit channel bindings).

Installation Step 6: Set Channel Bindings Keystore or PEM Properties

Automatically retrieving the TLS certificate is not the most secure option as an attacker could intercept this
request during (re)initialization and defeat the channel bindings protection. The most secure option is to use the
bindings.cert.keystore.* properties (or bindings.cert.pem* properties) to explicitly and safely
provide access to the server certificate.

See The HttpSecurityService Properties section and HttpSecurityService API documentation for details.

HTTP Form Based Logins

The HttpSecurityService supports username and password HTTP request parameter-based logins for use with
conventional HTML login forms.

Note: Setting any of the http.parameter.* properties will trigger the request input stream to be decoded which may not be
compatible with certain types of requests like those of REST services. In these instances it will be necessary to write
some code to directly invoke a suitable SecurityProvider.authenticate() method with the username and password
supplied by the client.

Caution: HTTPS should always be used regardless of authentication mechanism but failure to use HTTPS with
parameter-based logins is exceptionally insecure.

Note: Any login form resource must also be added to the excludes list.

To enabled parameter-based logins, simply add configuration properties (or web.xml init-params) such as the
following:

Copyright © IOPLEX Software
http://www.ioplex.com/

17

http.parameter.username.name = acctname
http.parameter.password.name = password

The above properties will instruct the HttpSecurityService to check for "acctname" and "password" HTTP
request parameters and then attempt to authenticate the user using those credentials.

Note: Once a client has authenticated successfully using explicit credentials, that identity will persist until the they logout
(described below) or their session times out. This is true even if the client has previously performed SSO authentication or
subsequently initiates SSO authentication. If the client initiates SSO while they are logged in with explicit credentials, the
SSO authentication will be accepted but the SSO identity will simply be discarded.

Logging Out

Once authenticated, whether it be through a login form, the browser password dialog or Windows built-in SSO,
authentication state will be stored in the HTTP session (using the “jespa.provider.state“ HttpSession attribute
key). If this state is removed, the client is effectively logged out. The HttpSecurityService includes a feature to
remove this state based on a client supplied HTTP parameter. To enable this feature, simply add a property
such as the following:

http.parameter.logout.name = logout

The above property (or web.xml init-param) will instruct the HttpSecurityService to check for the "logout" HTTP
request parameter. If it is present (the actual value is ignored), the authentication state stored in the HTTP
session will be removed thereby logging out the client. For example, with the above property set, a request like
the following:

 https://as1.busicorp.local/account/login?logout=1

would logout the client (and then presumably present the user with a login page).

Anonymous Access

The HttpSecurityService may be configured to allow clients to bypass authentication entirely and assume an
"anonymous" identity.

CAUTION: This feature allows any client to bypass authentication. If this feature is enabled, the developer is
completely responsible for controlling access to all content accessed through the HttpSecurityService using the
getRemoteUser, getUserPrincipal, getAccount or isUserInRole methods which will all return null or false if
the user is "anonymous".

This feature is useful when the site (or part of it) is intended to be open to the public or when the developer
needs to disable authentication completely so that an alternative security mechanism can be used later in the
request chain.

To enabled this feature, add the following property (or init-param):

http.parameter.anonymous.name = anon

The above init-param will instruct the HttpSecurityService to check for the "anon" HTTP request parameter. If it
is present (the actual value is ignored), and the client has not already authenticated, the client will assume the
special "anonymous" identity. For example, if the property is set to "anon", an HTTP request such as:

 http://as1.busicorp.local/jespa/?anon=1

will bypass authentication and install the anonymous identity (unless the client was already authenticated).

Note: If you want to implement this without using an HTTP parameter, you will need to write code and override the
isAnonymous method of the HttpSecurityService.

Copyright © IOPLEX Software
http://www.ioplex.com/

18

Even though an anonymous client has not authenticated, a special anonymous identity will be stored in the
HTTP session. Meaning after a client becomes anonymous, they will remain anonymous until they logout (see
the Logging Out section).

Windows Group Based Access Control

The HttpSecurityService supports group based access control. This functionality is exposed in two ways:

1. The HttpServletRequest.isUserInRole method may be used to determine if the current
authenticated user is in the named group.

2. The HttpSecurityService supports groups.allowed and groups.denied properties that control who
can authenticate through the HttpSecurityService.

Note: There is no feature to control access to specific resources because only an application could define how resources
are accessed. Trying to control access based on request path would likely lead to unexpected application specific security
vulnerabilities.

Note: The NtlmSecurityProvider also allows user account names to be used in place of group names.

NtlmSecurityProvider Access Control

The NtlmSecurityProvider implements Windows security group based access control. This can be leveraged by
the HttpSecurityService through the groups.allowed and groups.denied properties. Consider the following
example:

groups.allowed = BUSICORP\\Engineers,BUSICORP\\FinChart Admins,bcarter@busicorp.local

In the above example, the groups.allowed property is a comma separated list of two qualified Windows
group names and the account name of a specific individual. Only users within these groups, or the specifically
named user will be permitted to authenticate with the HttpSecurityService and therefore permitted access to the
content it protects.

If the groups.allowed property is not supplied, the default behavior is to permit access.

The groups.denied property is also a comma separated list of group names. If the current authenticated user
is found to be in any one of these groups, the access check immediately stops, the groups.allowed check is
not performed and the user will not be permitted access.

If a client is denied access they will either become anonymous, be presented with a login form (because a 401
Unauthorized response was sent), be redirected to the fallback location or receive a 403 Forbidden response.
Precisely what happens depends on what other features of the HttpSecurityService are enabled.

Note: Windows group names should always be qualified with a domain like BUSICORP\Engineers to eliminate any
possible ambiguous behavior in a multi-domain environment and to reduce the possibility of delays related to the domain
controller failing to resolve a name.

Note: If a security group or account name cannot be resolved to it's SID, significant delays may occur. Check the log file
(with a log.level >= 2) for "Failed to resolve name" error messages after making changes to your group access lists.

Note: Windows Domain Local Groups that are not in the same domain as the Jespa Computer account will not be in
scope (meaning the user will not be considered in that group).

LdapSecurityProvider Access Control

When using the LdapSecurityProvider, groups are specified using DN or RDN strings. In this case, it is important
to quote each group name. Otherwise, the commas in DN strings will be interpreted by the HttpSecurityService
as group name separators. The following example illustrates how to use DN strings with groups.allowed and
groups.denied.

groups.allowed = "CN=Lab Techs,DC=openbook,DC=edu", "CN=Postdocs,DC=openbook,DC=edu"

Copyright © IOPLEX Software
http://www.ioplex.com/

19

However, if the bindstr property includes a base DN, group names may be RDNs relative to that base. For
example, the below example is equivalent to the above example.

jespa.bindstr = ldap://dc100.openbook.edu/DC=openbook,DC=edu
...
groups.allowed = "CN=Lab Techs", "CN=Postdocs"

Customizing the HttpSecurityService

The HttpSecurityService is specifically designed to be extended with new code. By overriding methods like
isProtected, isAnonymous, isLogin, getRequestCredential, isAllowedAccess and others, the
behavior of the HttpSecurityService can be heavily customized. See the jespa.http.HttpSecurityService API
documentation for details.

CAUTION: If you decide to create a custom solution, be careful to route ALL requests through the
HttpSecurityService doFilter method. Do not call doFilter in an on-demand convention where control is
allowed to return before executing the primary function of the request. Trying to do this will almost certainly
result in unexpected behavior. The HttpSecurityService handles concurrent authentication states, proactive
POST re-authentication, suppressing redundant authentications and switching between explicit logins and SSO
(among other things).

The NtlmSecurityProvider
The NtlmSecurityProvider provides an implementation of NTLMSSP to initiate and accept NTLMv2
authentication. The acceptor closely mimics Windows behavior using the NETLOGON service over Secure
Channel with AES signing and sealing.

This provider implements much of jespa.security.SecurityProvider API including the token-based authentication
used by the HttpSecurityService, HttpSecurityFilter, SaslServer, SaslClient and other components. The
Account.isMemberOf method mimics Windows behavior using SID-based security group checking.

NtlmSecurityProvider Properties

The table below describes properties used by other components in this manual such as the HttpSecurityService.
See the NtlmSecurityProvider API documentation for a complete list.

Note: When used with other Jespa components like the HttpSecurityService, HttpSecurityFilter, SaslServer and
SaslClient, these property names will usually need to be prefixed with "jespa.".

Property Description Example

bindstr The name of the AD DS domain against which credentials will
be validated. This name is used with DNS SRV lookups to
locate a suitable domain controller. The NtlmSecurityProvider
will bind to the NETLOGON service of that server.

This parameter must be a fully qualified DNS domain name
or the fully qualified DNS hostname of a particular AD DS
server. Trying to use an IP address or NetBIOS name for this
property will result in an error.

The specified domain or domain of the specified server must be
the same as that of the Computer account identified by the
service.acctname property. If this condition is not true, a "SAM
database ... does not have a computer account" error will occur
as described in the Possible Issues: Issue 4 section.

See the DNS Requirements and Properties section for details
regarding how domain controllers are located.

example.com

service.acctname The name of the Computer account created in Step 1 of the
installation. This name must be the sAMAccountName and

jespa1$@example.com

Copyright © IOPLEX Software
http://www.ioplex.com/

20

domain name separated by an @ sign. The sAMAccountName
is the Computer account name with the $ sign at the end.

The domain name component is the fully qualified DNS domain
name that the Computer account is in. The Computer account
must be in the same domain identified by the bindstr property.

Note that this cannot be the name of an account used by an
actual computer or Windows OS instance. The account must be
created as described in Step 1 of the installation.

service.password The password corresponding to the service.acctname above.
This password should be long and random. See Step 2 of the
installation for instructions regarding setting this password.

Note: Internally this password is encrypted to prevent it from
being exposed such as within log files.

cav-22^bim.33~kip+92$

localhost.netbios.name IMPORTANT: This property is deprecated. If you set this
property at all (even to an empty string), you will likely receive
the error Logon failure: unknown user name or bad
password as described in Issue 10 in the Possible Issues
section.

DEPRECATED

log.path The absolute path to a log file used for debugging purposes.
See the jespa.util.LogStream class for information regarding
how to set a custom PrintStream (such as for interfacing with
other Java logging components).

C:\temp\jespa.log

log.level The level of information to be logged. Log level values are:
0 - nothing
1 - critical (this is the default)
2 - basic info can be logged under load
3 - almost everything
n - debugging only

2

account.canonicalForm A small integer indicating how account names should be
canonicalized (the form returned by
NtlmSecurityProvider.getIdentity()). Values of
interest are:

2 - Username - A simple unqualified username like abaker.
3 - Backslash - The short NetBIOS domain and username
separated by a backslash like EXAMPLE\abaker (sometimes
referred to as the “down-level login name”).
4 - Principal - The username and DNS domain name separated
by an ‘@’ character like abaker@example.com.

Note: The NtlmSecurityProvider can authenticate clients by
their userPrincipalName in which case it will be used if that
canonicalForm is used. However, if a client authenticates using
their sAMAccountName, a principal name will be constructed
from it (the so-called “implicit UPN”) which may not match the
userPrincipalName set on their account. Meaning, the canonical
name could be different depending on what name the user
supplies.

3

domain.trust.cache.values Depending on the canonical form being used, Jespa may need
to canonicalize a domain name (convert the NetBIOS name to
the DNS name or vice versa). Unfortunately it is not uncommon
for one or both names to be missing from trust information of
foreign domains retrieved through the local NETLOGON
service. This property can be used to fill-in the missing names
and give Jespa a complete set of NetBIOS / DNS domain name
mappings. The format of this property value is a comma
separated list of colon separated domain name pairs in the form
<netbios1>:<dns1>,<netbios2>:<dns2>,<netbios3>:<dns3> and
so on.

ENG:eng.busicorp.local,ASDF
:asdf.net,RSCH:research.bus
icorp.local

Copyright © IOPLEX Software
http://www.ioplex.com/

21

MSRPC TCP Transport Properties

The following properties are specific to MSRPC TCP transport communication which includes NETLOGON and
lsarpc calls used by the NtlmSecurityProvider.

msrpc.tcp.laddr The IP address of the local interface that Jespa should bind for MSRPC communication with domain
controllers. This can be used to bind a network interface other than the default selected by Java.

msrpc.tcp.soTimeout The SO_TIMEOUT value in milliseconds specifies how long Jespa will wait for a read call to return
before throwing an exception. The default value is 60000 (meaning 1 minute).

msrpc.tcp.connTimeout A value in milliseconds that specifies how long Jespa will wait for a new socket connection to be
established. The default value is 60000 (meaning 1 minute).

msrpc.tcp.idleTimeout A value in milliseconds that specifies how long an MSRPC TCP connection will be left open when there
is no activity. The default value is 20000 or 20 seconds. A value of 0 disables the idle timeout
functionality. If the network silently drops idle TCP connections, setting this to 0 may, albeit very
unlikely, result in “Read timed out” exceptions.

msrpc.useNamedPipe If set to “true”, Jespa will use SMB1 named pipes for communication with domain controllers.

Note: SMB1 is deprecated and disabled by default in most Windows environments.

The default value is “false”.

Note: Setting this property to true requires that the JCIFS library from https://www.jcifs.org/ is in the
application classpath.

Note: When setting these properties in the HttpSecurityService properties file, they must be prefixed with “jespa.” like
“jespa.msrpc.tcp.laddr = 10.120...”.

The LdapSecurityProvider
LdapSecurityProvider provides an easy to use interface for developers to create, update, delete and search
accounts, groups or other directory entries, check group membership and set or change passwords.

However, because this manual targets operator's and not developers, the descriptions of properties below are
mostly specific to the authentication and authorization functionality of the HttpSecurityService. Developer's
should refer to the LdapSecurityProvider API documentation for a complete description of this provider.

LdapSecurityProvider Properties

The table below describes some LdapSecurityProvider properties that are important to the HttpSecurityService
(and HttpSecurityFilter). For a complete technical description of all properties supported by the
LdapSecurityProvider, see the API documentation.

Note: To authenticate Active Directory clients, the NtlmSecurityProvider is superior. It has superior performance and
LDAP cannot be used to implement SSO. However, to authenticate HTTP clients against accounts in a non-Active
Directory LDAP server such as OpenLDAP, the LdapSecurityProvider may be used.

Note: When setting these properties in the HttpSecurityService properties file, they must be prefixed with “jespa.” like
“jespa.ldap.disposition = RFC”.

Property Description Example

ldap.disposition If this value starts with "RFC" as opposed to the
default "ADS", the behavior of the
LdapSecurityProvider changes significantly. See
the LdapSecurityProvider API documentation for
details.

RFC2251

bindstr An RFC 2255 style LDAP URL identifying the
authority to which this LdapSecurityProvider will be
bound. If the optional base DN is used, some

ldap://ldap1.openbook.edu/
OU=Engineering,DC=openbook,DC=edu

Copyright © IOPLEX Software
http://www.ioplex.com/

22

functions will accept an RDN relative to this base
(such as the isUserInRole method used within
Servlets and JSPs).

service.acctname The username used for authentication. For an RFC
based LDAP server this value must be a full DN
string. For an Active Directory server, this name
may be a principal name or DN.

ldapuser15@openbook.edu

service.password The password corresponding to the
service.acctname.

moonbike69

ldap.authentication.setcred
ential

If set to true, the LdapSecurityProvider will store
the authenticated user's credential (in encrypted
form) for use with subsequent operations. Meaning,
when used with the HttpSecurityService, this
enables impersonation. The default is false to
indicate that the service.acctname and
service.password properties should always be
used.

true

domain.netbios.name A NetBIOS domain name used for account name
canonicalization. See the acctname.canonicalForm
property. This is only required if users must be able
to supply account names in down-level login name
form (like BUSICORP\bcarter).

OPENBOOK

domain.dns.name A DNS domain name used for account name
canonicalization. See the acctname.canonicalForm
property. This is only required if users must be able
to supply account names in principal form (like
bcarter@busicorp.local).

openbook.edu

authority.dns.names.resolve If this property is set to false, the
LdapSecurityProvider will not use DNS SRV
lookups to locate domain controllers. For non-
Active Directory LDAP servers, it will frequently be
necessary to set this property to false. But for
proper redundancy and failover, DNS SRV records
should be created so that this property can be true.

false

account.canonicalForm A small integer that controls the format of account
names returned by getRemoteUser and other
methods that retrieve the identity of the an
authenticated user. This value should be one of:

2 - Username - A simple unqualified username like
bcarter,

3 - Backslash - A backslash style name like
BUSICORP\bcarter or

4 - Principal - A principal style name like
bcarter@busicorp.local.

3

log.path The absolute path to a log file used for debugging
purposes. See the jespa.util.LogStream class for
details.

C:\temp\jespa.log

log.level The level of information to be logged. Log level
values are:
0 - nothing
1 - critical (this is the default)
2 - basic info can be logged under load
3 - almost everything
n - debugging

2

Copyright © IOPLEX Software
http://www.ioplex.com/

23

See the example webapp for several example configurations that illustrate how to use the LdapSecurityProvider.

The ChainSecurityProvider
The ChainSecurityProvider is a wrapper around a "chain" of SecurityProviders. The ChainSecurityProvider is
most commonly used with the HttpSecurityService to authenticate web clients against multiple independent
security authorities.

Note: It is not necessary to use the ChainSecurityProvider to authenticate clients against multiple Active Directory
domains with the NtlmSecurityProvider if the domains have trust relationships. The NtlmSecurityProvider fully supports
cross domain authentication by itself.

When the authenticate method is called (such as by the HttpSecurityService), the ChainSecurityProvider iterates
through each SecurityProvider in the "chain" until authentication is successful. All other methods simply call the
corresponding method on the currently selected SecurityProvider.

Note: Only the first SecurityProvider in a chain can perform SSO authentication. To disable SSO in the
NtlmSecurityProvider (so that it can be a secondary chain element), set flags.capabilities.accept.ntlmssp = false.

A chain is defined entirely using properties. The chain.names property defines the list of chain element names.
For each chain element name, the property chain.<name>.provider.classname indicates to
ChainSecurityProvider the name of the SecurityProvider class to construct for that chain element. For all other
properties that begin with chain.<name>., that prefix is removed and the property is inserted into the Map
used to construct the SecurityProvider for that chain element. Consider the following list of properties:

chain.names = BUSICORP,OPENBOOK

chain.BUSICORP.provider.classname = jespa.ntlm.NtlmSecurityProvider
chain.BUSICORP.bindstr = dc100.busicorp.local
chain.dns.servers = 192.168.44.110,192.168.22.115
chain.dns.site = Paris
chain.BUSICORP.service.acctname = jespa1$@busicorp.local
chain.BUSICORP.service.password = cav-22^bim.33~kip
chain.BUSICORP.account.canonicalForm = 3

chain.OPENBOOK.provider.classname = jespa.ldap.LdapSecurityProvider
chain.OPENBOOK.ldap.disposition = RFC
chain.OPENBOOK.domain.netbios.name = OPENBOOK
chain.OPENBOOK.domain.dns.name = openbook.edu
chain.OPENBOOK.bindstr = ldap://192.168.2.119/OU=Engineering,DC=openbook,DC=edu
chain.OPENBOOK.service.acctname = CN=jespa1,DC=openbook,DC=edu
chain.OPENBOOK.service.password = opensaysme44
chain.OPENBOOK.account.canonicalForm = 3

The above example shows a chain of two SecurityProviders called BUSICORP and OPENBOOK.

Note: Chain element names are completely arbitrary although they should not contain characters like equals (=) or
brackets (<) which might conflict with configuration file syntax.

In the above example, the BUSICORP chain uses the NtlmSecurityProvider whereas the OPENBOOK chain
uses the LdapSecurityProvider configured for an RFC-based LDAP server like OpenLDAP. Using this
configuration, the client can authentication with Active Directory using either SSO or explicit credentials or with
the RFC-based LDAP server using explicit credentials.

When authenticating clients against multiple independent authorities using the ChainSecurityProvider, it is
important to supply domain properties and to use a qualified canonicalForm (3 for backslash form or 4 for
principal form). Otherwise, it may not be possible to correctly process account names that exist in both
authorities. Displaying names in a qualified form like BUSICORP\cdavis or cdavis@busicorp.local as opposed to
just cdavis will also reduce user confusion about which credentials are being used.

Group name syntax is different depending in the SecurityProvider being used. For example, the
NtlmSecurityProvider supports names in a form such as "BUSICORP\Wiki Users" whereas the

Copyright © IOPLEX Software
http://www.ioplex.com/

24

LdapSecurityProvder supports only DN or RDN group names such as "CN=Wiki
Users,OU=Engineering,DC=openbook,DC=edu" or just "CN=Wiki Users" if a suitable base is supplied in the
bindstr. The appropriate form should be used for each SecurityProvider.

The HTTP Client
The Jespa library includes an HTTP 1.1 client with support for NTLMv2, SPN and channel binding, and other
features that might be important in Windows environments.

Note: The Jespa HTTP client does not currently support proxies.

Currently this client is exposed only through the HttpURLConnection API. The following code fragment
demonstrates how to use the Jespa HTTP client to perform a simple GET request:

HttpURLConnection conn = new HttpURLConnection(new URL(urlstr));

InputStream input = conn.getInputStream();
byte[] buf = new byte[64];
int n;

while ((n = input.read(buf, 0, buf.length)) > 0) {
 System.out.write(buf, 0, n);
}
input.close()

See the examples directory for numerous other examples that use NTLM credentials, POST requests and more.

The client is also exposed as an HTTP java.net.URLStreamHandler for use with java.net.URL.

Note: IOPLEX believes that the URLStreamHandler mechanism is clumsy and that it should not be used.

To install the Jespa HTTP client for use with java.net.URL, add the "jespa" package prefix to the
java.protocol.handler.pkgs system property as illustrated by the following code:

String pkgs = System.getProperty("java.protocol.handler.pkgs");
if (pkgs == null) {
 pkgs = "jespa";
} else {
 pkgs += "|jespa";
}
System.setProperty("java.protocol.handler.pkgs", pkgs);

This should be performed very early in your program such as in your main method. Otherwise, it may also be
suitable to specify it on the command-line like:

java -Djava.protocol.handler.pkgs=jespa MyHttpClientProgram

Using NTLM Authentication with the HTTP Client

The Jespa HTTP client supports NTLM authentication (including all variations of NTLMv2) and leverages the
JAAS subject based security model to access credentials. More specifically, the client will initiate NTLM
authentication if the server requires it and a jespa.security.PasswordCredential object is present in the
current Thread's Subject. The JAAS and javax.security.auth.Subject documentation details how
exactly to perform this bootstrapping procedure but the examples/ directory contains several examples that
use a variety of credential bootstrapping methods. In particular look at how examples/HttpGet.java uses
the jespa.security.RunAs utility class.

To initiate NTLM authentication either the credential account name must include the AD DS DNS domain name
or the jespa.domain.dns.name System property (or http.auth.ntlm.domain for compatibility with the

Copyright © IOPLEX Software
http://www.ioplex.com/

25

default Java HTTP client) must be set to the AD DS DNS domain.

Note: The short NetBIOS domain name will not work with these properties.

The SASL Client and Server
The Jespa library provides standard javax.security.sasl SaslClient and SaslServer implementations. Also
included are SaslClientFactory and SaslServerFactory classes that adds NTLM authentication,
integrity and confidentiality to the stock LDAP client used by JNDI (see the Using NTLM Security with JNDI /
LDAP section below).

The following line of code installs the SaslClientFactory and SaslServerFactory classes through a JCA
provider.

java.security.Security.addProvider(new jespa.security.JCAProvider());

Note: The Jespa JCA provider is used only to install the SaslClientFactory and SaslServerFactory. Jespa does not
currently implement any other JCA operations. JCA providers should not be confused with the Jespa SecurityProvider
interface. The two "provider" interfaces are largely unrelated.

The SaslClient and SaslServer may also be used directly. See the API documentation for details.

Like the Jespa HTTP client, the Jespa SASL client also leverages the JAAS subject based security model to
retrieve the credential that should be used. More specifically, the client will initiate NTLM authentication if a
jespa.security.PasswordCredential object is present in the current Thread's Subject. The JAAS and
javax.security.auth.Subject documentation details how exactly to perform this bootstrapping procedure,
but the examples/ directory contains several example programs that use a variety of credential bootstrapping
methods. In particular, look at how jespa.util.RunAs is used within examples/SaslTest.java.

Using NTLM Security with JNDI / LDAP

Provided that the SaslClientFactory has been installed and the calling thread's Subject has the
necessary PasswordCredential, the final step is to specify a JNDI Context.SECURITY_AUTHENTICATION
property of "GSS-SPNEGO" when building a DirContext as illustrated by the following example:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, url);
env.put(Context.SECURITY_AUTHENTICATION, "GSS-SPNEGO");
DirContext ctx = new InitialDirContext(env);
...

Jespa properties that are prefixed with "jespa." will be passed to the NtlmSecurityProvider through the Hashtable
parameter (or the SaslClient and SaslServer Map parameters). For example, instead of service.acctname
the property name would be jespa.service.acctname.

Note: Jespa does not (currently) implement SPNEGO. But Windows advertises and uses the "GSS-SPNEGO" SASL
mechanism name when in fact raw NTLMSSP is used.

Note: Jespa also includes an advanced LDAP API. See the jespa.ldap.* API documentation for details.

The LoginModule
Jespa provides a javax.security.auth.spi.LoginModule implementation that supports NTLM authentication.

See the jespa.security.LoginModule API documentation for details.

Copyright © IOPLEX Software
http://www.ioplex.com/

26

Possible Issues
This section describes possible issues you may encounter using Jespa and how to fix them. If you encounter an
issue that you think should be listed here, please contact support@ioplex.com and tell us about it.

Issue 1: The "jespa.http.HttpException: 401 Unauthorized" exception

If the Jespa HTTP client will not perform NTLM authentication, make sure that the Active Directory DNS domain
name is supplied through either a) the credential account name (such as alice@example.com) or b) the System
property jespa.domain.dns.domain (or http.auth.ntlm.domain). The short NetBIOS domain name will
not work.

Issue 2: The "Not a Type 1 Message" exception

NTLM over HTTP cannot traverse proxies, load balancers, connectors or similar without help. If you are
proxying, forwarding or load balancing in front of Jespa, see the Proxying and Load Balancing with NGINX
section.

The NTLM HTTP authentication protocol is a multi-request "handshake" like this example GET sequence:

 C: GET /jespa/Whoami.jsp
 S: 401 Unauthorized
 WWW-Authenticate: NTLM

 C: GET /jespa/Whoami.jsp
 Authorization: NTLM TlRMTVNTUAABAAAAB4IIAAAAAAAAAAAAAAAAAAAAAAA=
 S: 401 Unauthorized
 WWW-Authenticate: NTLM TlRMTVNTUAACAAAAAAAAA...AC4AZgBvAG8ALgBuAGUAdAAAAAAA

 C: GET /jespa/Whoami.jsp
 Authorization: NTLM TlRMTVNTUAADAAAAGAAYAFgA...AAAYABgAcAwATPGDh0OrwyZcJ9CEoJw==
 S: 200 OK

This protocol requires a persistent and unique TCP connection. Meaning Keep-Alive behavior is required. If the
connection is closed / broken during the “handshake”, authentication will fail with “Not a Type 1 Message” or
“Not a Type 3 Message”.

Verify that the Java app server has Keep-Alive enabled.

If there is a proxy between clients and Jespa, the only remedy would be to adjust the proxy configuration. See
the Proxying and Load Balancing with NGINX section.

A less common cause of this error are internal redirects. If a request is internally redirected back through the
HttpSecurityService with the WWW-Authenticate header present, the HttpSecurityService will attempt to
process the header token again.

Clients Other than Browsers

If you are using a client other than a browser (like a Java program or PowerShell script), a possible cause for
this exception is failure to maintain session state on the server. In particular, make sure the client is using
cookies.

For example, when using the C# HttpWebRequest API, you must set a CookieContainer as illustrated by the
following example code fragment:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
request.CookieContainer = new CookieContainer();
...

When using PowerShell, you will need to use -SessionVariable and possibly -WebSession arguments as

Copyright © IOPLEX Software
http://www.ioplex.com/

27

illustrated by the following code fragment:

$acctname = "theacctname@busicorp.local"
$password = "The_paS$_W0rd"
$secpass = ConvertTo-SecureString $password -AsPlainText -Force
$cred = New-Object System.Management.Automation.PSCredential($acctname, $secpass)
$result = Invoke-WebRequest -Credential $cred -SessionVariable session -UseBasicParsing $url
... subsequent requests using the $session ...
$result = Invoke-WebRequest -Credential $cred -WebSession $session -UseBasicParsing $url

When using VBScript with the WinHttpRequest API, the cookie header must be saved to a variable as illustrated
by the following code fragment:

Dim url, cookie

url = "https://www.example.com/jespa/secure/Whoami.jsp"
cookie = null

Function GetURLText(url)
Dim http, hdrs

Set http = CreateObject("WinHttp.WinHttpRequest.5.1")
http.Open "GET", url, False
http.SetAutoLogonPolicy 0

If (IsNull(cookie) = False) Then
http.SetRequestHeader "Cookie", cookie

End If
http.Send

hdrs = http.GetAllResponseHeaders()
If (InStr(hdrs, "Set-Cookie: ")) Then

cookie = http.GetResponseHeader("Set-Cookie")
End If

GetURLText = http.ResponseText
End Function

Issue 3: The browser will not perform automatic authentication (SSO)

See the Requirements and Windows Settings for Single Sign-On (SSO) section.

Issue 4: The "SAM database ... does not have a computer account" exception

If you receive the following error:

"The SAM database on the Windows NT Server does not have a computer account for this workstation trust relationship."

this indicates that the domain controller was located using the bindstr property but could not find the Computer
account identified by the service.acctname property. There are several possible causes for this error which can
be unexpected and include the following:

1. Make sure that the Computer account is in the domain identified by the bindstr property. For example, if
the Computer account is jespa1$@eu.example.com but the bindstr property is example.com and
eu.example.com is a sub-domain of example.com, you may receive this error. To fix this issue you need
to either change the bindstr to match the Computer account domain or recreate the Computer account
in the correct domain.

2. If you have just created the Computer account it may require some time to replicate to the domain
controller selected by Jespa. To resolve this issue, adjust the bindstr property to temporarily specify the
fully qualified DNS hostname of the specific domain controller on which the account is known to exist or
wait for directory replication to complete.

Copyright © IOPLEX Software
http://www.ioplex.com/

28

3. Check the service.acctname format. The service.acctname is the sAMAccountName (which for a
Computer account always ends with a $ sign) followed by an @ sign followed by the account's DNS
domain like jespa1$@example.com.

4. Make sure that you created a Computer account and not a User account. Only a Computer account can
bind the NETLOGON service.

Issue 5: The "format of the specified computer name is invalid" exception

This error may occur if the bindstr parameter is not a fully qualified DNS domain name or fully qualified DNS
hostname. For example, this error may occur if the operator tries to use an IP address for the bindstr property.
This error can also occur if authority.dns.names.resolve = false is set and the bindstr is not a fully qualified DNS
hostname.

This error can also occur if you are using a DNS records file with invalid record data. For example, if the
hostname of an SRV record does not correspond to the true hostname of a real server, this error can occur. See
The DNS Records File section for details.

Issue 6: Windows SID based access control does not work as expected

There are a few conditions that can lead to unexpected behavior when using Windows group access checks:

1. Domain Local groups not in the Computer account domain will not be in scope. There are four different
types of security groups: Universal, Global, Domain Local and Builtin. When a user authenticates using
NTLM, the domain controller supplies a fully expanded list of group SIDs for all Universal and Global
groups but only Domain Local groups from the domain of the Jespa Computer account used. Domain
Local groups of a user in a different domain will not be included. This issue is not unique to Jespa - this
is how Windows access control has always worked2.

2. If group membership has been changed, the user must logout of their workstation and back in for the
changes to take effect.

3. Group names should be qualified with a domain name like EXAMPLE\Engineers and not just Engineers.
Check the Jespa log file for error messages like "Failed to resolve name: EXAMPLE\Engineers".

4. Backslashes in properties files must be escaped with an additional slash like EXAMPLE\\Engineers.

Issue 7: The "page cannot be displayed" error using the HttpSecurityService

There could be numerous causes of this error. However, one possible cause is that the client is not configured
to perform Windows built-in authentication whereas we server security policy requires it.

Issue 8: The "Failed to locate authority for name: EXAMPLE" error

This error most likely indicates that you need to set the dns.servers property. See the DNS Properties section
and review your DNS configuration in general.

Issue 9: POST data is not submitted when using the HttpSecurityService

This condition was common when using Internet Explorer which would not submit POST data until after the
NTLMSSP handshake completed and it had previously authenticated with the target. The only way to stop this
behavior was to either close IE and restart it or set a DisableNTLMPreAuth registry value as described in
Microsoft KB251404. However, because IE is no longer supported by Microsoft and generally not used, this
should no longer be an issue.

Another possible cause of this condition is using the http.parameter.* properties which will cause the app server
to decode the request input stream. Some request types like REST services or certain application servers like
ColdFusion may exhibit this behavior. If this is applicable, disable the http.parameter.* properties so that the
input stream is not prematurely decoded.

2 Note that if the authentication mechanism were Kerberos and not NTLM, groups would be compiled as Kerberos tickets transit the trust
relationships between domains and therefore Domain Local groups of the user's domain would be in scope instead.

Copyright © IOPLEX Software
http://www.ioplex.com/

29

Issue 10: The "Login failure: unknown user name or bad password" exception

This error almost certainly means exactly what it says - the account does not exist or the supplied password is
simply incorrect.

One likely cause of this error is old credentials stored in a browser credential manager or keychain. Clear any
saved passwords for the target site and try again.

Note: AD has a “minimum password age” policy that does not permit a password to be changed within some time period
which is most commonly 1 day. The operator will not receive an error when trying to change a password within this
period. If you have reset the Jespa Computer account password more than once, it could be that the change was not
effective.

Note: Computer account passwords do NOT expire. The “Domain member: Maximum machine account password age” policy
instructs domain members to periodically submit a password change but they are NOT required to. The Jespa Computer account will not
stop functioning after the policy period.

This error can also occur if you set the localhost.netbios.name property. This property is deprecated and must
not be set.

This error can also occur if you set the domain.netbios.name property on the NtlmSecurityProvider. The
domain.netbios.name and domain.dns.name properties of the NtlmSecurityProvider are read-only and must not
be set.

Issue 11: The "account used is a Computer Account" exception

This error indicates that there is a problem with the Computer account used by Jespa. The most efficient way to
resolve this issue is to simply create a new Computer account as described in Step 1 of the Installation section
and then delete the old account.

Issue 12: The "NetrLogonSamLogon return authenticator check failed" exception

This error occurs when the same Computer account is used to communicate with the NETLOGON service from
two different Jespa instances. See the Validating NTLM Credentials with the NETLOGON Service for additional
information.

SecurityProviderException: NetrLogonSamLogon return authenticator check failed
 at jespa.ntlm.Netlogon.validate0(Netlogon.java:191)
 at jespa.ntlm.Netlogon.validate(Netlogon.java:229)
 at jespa.ntlm.NtlmSecurityProvider.authenticate(NtlmSecurityProvider.java:417)
 ...

To correct this issue, you must create a separate Computer account for each Jespa instance.

Issue 13: The “java.lang.NoClassDefFoundError: jcifs/smb/...” exception

UPDATE: JCIFS is no longer required as of Jespa 1.2.5. Jespa now uses raw TCP transport for MSRPC by
default. JCIFS is only required if you want to use the older SMB1 named pipe transport.

This error will occur if you have set msrpc.useNamedPipe = true but the JCIFS library is not in your classpath.
Download and install the JCIFS library from https://www.jcifs.org.

Issue 14: The “jespa.util.NtException: Access is denied.” exception

If you receive the following exception in the log:

Caused by: jespa.util.NtException: Access is denied.
at jespa.ntlm.Netlogon.connect(Netlogon.java:372)

The most likely explanation is that your Computer account password is simply incorrect.

Copyright © IOPLEX Software
http://www.ioplex.com/

30

Note: AD has a “minimum password age” policy that does not permit a password to be changed within some time period
which is most commonly 1 day. The operator will not receive an error when trying to change a password within this
period. If you have reset the Jespa Computer account password more than once, it could be that the change was not
effective.

Note: Computer account passwords are NOT required to meet password complexity requirements policy. Meaning if you
receive an “Access id denied” error using a Computer account, password complexity is not the cause of this error.

Note: Computer account passwords do NOT expire. The “Domain member: Maximum machine account password age” policy
instructs domain members to periodically submit a password change but they are NOT required to. The Jespa Computer account will not
stop functioning after the policy period.

Note: It is not uncommon for the operator to insist that the password is correct only to find out later that resetting it or
deleting the Computer account and running SetupWizard.vbs again resolved the issue. Watch carefully for errors when
running scripts and PowerShell commands.

Issue 15: The “jespa.util.NtException: 0xC0000418” exception

This error will occur if NTLM is restricted by domain policy:

 jespa.util.NtException: 0xC0000418
 at jespa.ntlm.Netlogon.validate0(Netlogon.java:706)
 at jespa.ntlm.Netlogon.validate(Netlogon.java:793)
 at jespa.ntlm.NtlmSecurityProvider.authenticate(NtlmSecurityProvider.java:1407)

This NT status code means STATUS_NTLM_BLOCKED "The authentication failed because NTLM was blocked."

To resolve this issue, you must add each Jespa computer account to the following group policy setting:

Computer Configuration > Policies > Windows Settings > Security Settings > Local Policies >
Security Options

Enable the following setting:

Network security: Restrict NTLM: Add server exceptions in this domain

and add the name of each Jespa computer account like "jespa1" (without the $ sign). If you use the same prefix
for all of your Jespa accounts, you may also use a wildcard like "jespa*" to add an exception for all Jespa
computer accounts and avoid adjusting security policy in the future.

Issue 16: SPN BINDINGS FAILURE and CHANNEL BINDINGS FAILURE Errors

These errors indicate that the SPN and / or channel bindings security checks are failing.

No match for targetSpn submitted: HTTP/alma92as5.example.com
SPN BINDINGS FAILURE: SPN did not match bindings.targetSpns, SPN not submitted or
bindings.targetSpns was not successfully initialized.
No match for bindings.cert.hash submitted: F230EC6440516D4519DD119C3A59C7B6
CHANNEL BINDINGS FAILURE: channel bindings did not match bindings.cert.hash, channel bindings not
submitted or bindings.cert.hash was not successfully initialized.

Aside from actual attacks, the most likely cause of these errors is missing or incorrect binding properties. More
specifically, these errors will occur if you are forwarding requests through another server like NGINX.

Note: You can simply disable these security checks and the errors produced by setting the properties:

Copyright © IOPLEX Software
http://www.ioplex.com/

31

 bindings.targetSpns.policy = 0
 bindings.cert.hash.policy = 0

However, the SPN failure is easy to fix. Simply search the log file (with log.level >= 2) for “No match for
targetSpn” and set the bindings.targetSpns property to the SPN found in the log:

bindings.targetSpns = HTTP/alma92as5.example.com

An easy way to fix the channel bindings failure is to search the log file (with log.level >= 2) for “No match for
bindings.cert.hash” and set the bindings.cert.hash property to the hash found in the log:

bindings.cert.hash = F230EC6440516D4519DD119C3A59C7B6

Note: This hash will need to be updated when the certificate is updated (unless you use the bindings.cert.url property
instead).

While these methods are quick and easy, they could be incorrect (the values in the log could have been
submitted by an attacker). For maximum security, carefully review the SPN and Channel Bindings (EPA)
section.

Example Code
All source code included with the Jespa package may be modified, used and distributed freely in accordance
with the Copyright statement at the top of each source file. These Copyright statements are an exception to the
standard Jespa EULA (see the LICENSE.txt file) which states that Jespa may not be redistributed in any form
without written permission from IOPLEX Software.

The MyHttpSecurityFilter Example

The jespa.examples.MyHttpSecurityFilter class illustrates how to create a custom HTTP security filter that
demonstrates:

● How to extend the HttpSecurityService directly. Note that the HttpSecurityService does not implement
the Filter interface. So, unlike this example, you can integrate the HttpSecurityService into non-filter
based solutions and custom Servlet containers. See the jespa.Http.HttpSecurityService API
documentation for details.

● How to protect the service.password by encrypting it so that it does not appear as plaintext in the
configuration.

● How to disable the filter using a simple boolean property.

● How to use an inner class as a "dummy" FilterChain to perform work after the request has passed
through the HttpSecurityService (as opposed to using a separate Filter later in the chain). This can be
used to retrieve the SecurityProvider and Account associated with the authentication.

All of the init-params are the same as the HttpSecurityFilter with the exception of the following:

Name Description Example

jespa.log.path The path to a log file to which all Jespa logging
messages should be written. This example uses
a log4j DailyRollingFileAppender to create a
new log file every hour.

/tmp/jespa.log

my.disabled If set to "true", the filter will be completely
disabled. Specifically, the doFilter method will
just call the next doFilter method in the chain

true

Copyright © IOPLEX Software
http://www.ioplex.com/

32

without performing any security checks or even
fully initializing HttpSecurityService.

The default behavior is to not disable the filter.

Note: If this property is set in the properties.path
file, once it is set to true, the Filter cannot be un-
disabled without reloading the webapp because
the properties file is ultimately processed in
HttpSecurityService.doFilter.

my.service.password.encrypted The encrypted form of the service.passsword.

The procedure for determining the encrypted
password is described in the next section.

If this value is not supplied, the usual
unencrypted service.password is required.

qoDELaPeSvpZJVHWuaX

Setting the MyHttpSecurityFilter Encrypted Password

The MyHttpSecurityFilter example allows the service.password to be supplied in an encrypted form to prevent
operators from easily viewing the plaintext Computer account password. However, to determine the encrypted
form of the plaintext password, you must perform the following procedure:

1. Temporarily specify the desired password as the plaintext service.password property. Then also set the
my.service.password.encrypted property to anything (such as "xyz") and set the jespa.log.level = 3.

2. Initialize the filter. When the filter detects both password properties are set, it will encrypt the
service.password value and write it to the log file.

3. View the log file and locate the entry that looks like the following:

2022-04-06 12:25:06: my.service.password.encrypted = qoDELaPeSvpZJVHWuaX

Now set the indicated value as the my.service.password.encrypted property, delete the
service.password property, restore the jespa.log.level value and restart the webapp.

Copyright © IOPLEX Software
http://www.ioplex.com/

33

The LdapSearch Utility
The LdapSearch utility may be used to query LDAP servers like AD DS servers.

The LdapSearch commandline syntax is defined as follows:

Usage: LdapSearch [-f <propfile>] [-v <level>] [-d ADS|RFC] [-x] [-t] [-a <authtype>] [-u
<username> -p <password>] ldap://host/base?attrs?scope?filter

The following table describes each option in detail:

Parameter Description

-f <propfile>

Specifies a properties file. See the LdapSecurityProvider API documentation for a detailed
table of possible properties. In practice, the most likely properties to be used with this utility
class are the dns.servers and dns.site properties which in fact should be specified so
that the implementation can properly locate a suitable LDAP server given only a domain name
in the LDAP URL. Other properties that might be used are ldap.disposition,
service.acctname and service.password (although these can also be specified on the
commandline using the -d, -u and -p parameters) and perhaps ldap.search.maxcount
and others.

-v <level> Indicates the log level for "verbose" output. An ideal value for debugging usage issues is 4.

-d ADS|RFC

Specifies the "disposition" of the target server. With respect to this utility, this parameter
controls attributes definitions and authentication behavior. The default value is "ADS" but if the
server is not Active Directory, a value that starts with "RFC" will need to be specified (see
examples below).

-x

Disable integrity and confidentiality. This is useful for debugging network communication such
as with packet capture software. This options should otherwise probably not be used. Note
that even if this option is not used, the server may choose to not negotiate confidentiality or
integrity.

-t
Use TLS confidentiality. This option requires a trust store containing the PKI certificate
exported from the LDAP server. The trust store file can be specified using the a commandline
parameter like -Djavax.net.ssl.trustStore=dc1.keystore.

-a <authtype>

Specifies the JNDI Context.SECURITY_AUTHENTICATION such as "simple", "GSSAPI",
etc. The default authentication type depends on the LDAP disposition of the server (specified
with the -d option or ldap.disposition property). If the disposition starts with "ADS", the
default authentication behavior is to use the Jespa NTLM and SaslClient infrastructure which
provides NTLMv2 authentication and 128 bit session security. If the disposition starts with
"RFC", the default authentication type is "simple". In this case, the plaintext password and
communication should be secured with TLS confidentiality using the -t option (although it
may not be required by the server).

-u <username>
The username used to authenticate with the target server. If this parameter is not specified,
the service.acctname property from the properties file will be used.

-p <password>
The password corresponding to the above username used to authenticate with the target
server. If this parameter is not specified, the service.password property from a the
properties file will be used.

Copyright © IOPLEX Software
http://www.ioplex.com/

34

For a detailed description of RFC2255 style LDAP URLs with many examples, see the LdapSecurityProvider
API documentation.

LdapSearch Command Examples

The following trivial example illustrates how to query the RootDSE properties of an Active Directory server.

C:\>java -cp jespa-2.0.0.jar jespa.ldap.LdapSearch 'ldap://192.168.2.110/'

For simplicity, an IP address is used in the LDAP URL. However, ideally a domain name or possibly a hostname
should be supplied instead. A properties file should also be supplied (using the -f parameter) with DNS
properties so that a suitable server can be properly located at runtime. Because this query is for the RootDSE
and because no credentials were supplied, this example uses an anonymous bind.

The following example illustrates how to query a User account in Active Directory.

Note: This command must be typed on a single line.

C:\>java -cp jespa-2.0.0.jar jespa.ldap.LdapSearch -f busicorp.prp
 'ldap://busicorp.local/DefaultNamingContext??sub?(&(objectCategory=person)
 (sAMAccountName=hmuller))'

CN=Hans Müller,CN=Users,DC=busicorp,DC=local:
 displayName: Hans Müller
 givenName: Hans
 sAMAccountType: 805306368
 mobile: 9083773378
 primaryGroupID: 513
 objectClass: [top,person,organizationalPerson,user]
 badPasswordTime: 2018-12-16 12:24:22
 objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=busicorp,DC=local
 cn: Hans Müller
 userAccountControl: 590336
 userPrincipalName: hmuller@busicorp.local
 dSCorePropagationData: [2019-09-17 13:47:25,2017-05-10 22:42:52,1600-12-31 19:04:17]
 codePage: 0
 distinguishedName: CN=Hans Müller,CN=Users,DC=busicorp,DC=local
 whenChanged: 2019-04-19 19:37:21
 whenCreated: 2017-05-02 13:51:19
 pwdLastSet: 2019-12-11 12:11:17
 logonCount: 309
 accountExpires:
 lastLogoff: 1600-12-31 19:00:00
 lastLogonTimestamp: 2019-04-19 19:37:21
 objectGUID: bWYA2RAjQUeXz34GLCvGTg==
 sn: Müller
 lastLogon: 2019-09-21 13:27:16
 uSNChanged: 2896697
 uSNCreated: 15617
 objectSid: S-1-5-21-2799971297-2625803212-4394051119-1431
 countryCode: 0
 sAMAccountName: hmuller
 instanceType: 4
 memberOf:
["CN=Engineers,CN=Users,DC=busicorp,DC=local","CN=Group598,CN=Users,DC=busicorp,DC=local",...,"CN
=Remote Desktop Users,CN=Builtin,DC=busicorp,DC=local"]
 badPwdCount: 0
 name: Hans Müller

The above query will use NTLMv2 authentication with 128 bit transport encryption unless the server negotiates
otherwise. This example uses the special 'DefaultNamingContext' base identifier (which only works with AD
DS servers). This example also shows how to use a properties file which ideally should contain dns.servers
and dns.site properties so that a suitable domain controller can be properly located. Also, if a properties file is

Copyright © IOPLEX Software
http://www.ioplex.com/

35

used, the credentials can alternatively be supplied with the service.acctname and service.password
properties instead of with the -u and -p parameters. The output of this example illustrates how the
LdapSecurityProvider's builtin attribute definitions help format values such as attributes that are single-valued as
opposed to multi-valued (shown with square brackets) and attribute values like times and the objectSid
attribute which would otherwise not be easily interpreted by the average user.

The following example uses the same query as the first example but uses Kerberos authentication.

Note: Using the builtin Java Kerberos infrastructure to authenticate with AD DS is generally harder to use because the
Java Kerberos implementation does not provide SASL transport security, it requires a krb5.conf file and Kerberos in
general is sensitive accessibility of AD DS servers by clients, DNS and time differences between systems.

C:\>java -cp jespa-2.0.0.jar jespa.ldap.LdapSearch -a GSSAPI
'ldap://dc1.busicorp.local/DefaultNamingContext??sub?(sAMAccountName=hmuller)'

The above example assumes a Kerberos TGT is present in the user's Kerberos ticket cache. Alternatively,
credentials may be supplied explicitly using the -u and -p parameters although the username must be in a
principal name form with the domain in UPPERCASE such as -u bcarter@BUSICORP.LOCAL.

The following example illustrates how to query a user account in an RFC based LDAP server like OpenLDAP.

C:\>java -cp jespa-2.0.0.jar jespa.ldap.LdapSearch -d RFC -u 'CN=Alice
Baker,OU=Research,DC=openbook,DC=edu' -p opensaysme
'ldap://192.168.44.110/OU=Research,DC=openbook,DC=edu??sub?(uid=cdavis)'

cn=Chris Davis,ou=Research,dc=openbook,dc=edu:
 givenName: Chris
 sn: Davis
 userPassword: e0X1cJ1ENldvYkcvaTF63JNEZRpcH2JtNXpRPT0=
 uidNumber: 1003
 gidNumber: 5000
 objectClass: [inetOrgPerson,posixAccount,top]
 uid: cdavis
 cn: Chris Davis
 homeDirectory: /home/users/Research/cdavis

The first major difference between this example and the Active Directory example is that the server "disposition"
is set using -d RFC. This indicates to the Jespa LDAP SecurityProvider that authentication and attribute
definitions suitable for RFC-based servers should be used. Because the default authentication method for RFC-
based servers is a "simple" bind, the username must be a full DN. Also, TLS encryption should be used.
However, for simplicity, TLS is excluded in this example as it would require that a certificate be generated on the
LDAP server, exported and then imported into a suitable Java trustStore file (see the -t parameter
description). For simplicity, an IP address is used in this example. If a hostname were used, either DNS SRV
records for LDAP would be required or, if a properties file is used, the property
authority.dns.names.resolve = false would be required to disable SRV lookups in which case an
FQDN hostname could be used.

The following LdapSearch example command illustrates how to retrieve the sAMAccountName of all users in
Active Directory:

C:\>java -cp jespa-2.0.0.jar jespa.ldap.LdapSearch -f jespa.prp
'ldap://dc100.busicorp.local/DefaultNamingContext?sAMAccountName?sub?(objectCategory=Person)'
CN=Administrator,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: Administrator
CN=Guest,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: Guest
CN=SUPPORT_388945a0,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: SUPPORT_388945a0
CN=krbtgt,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: krbtgt

Copyright © IOPLEX Software
http://www.ioplex.com/

36

CN=Bob Carter,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: bcarter
CN=Hans Müller,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: hmuller
CN=host_ls1,OU=s,DC=busicorp,DC=local:
 sAMAccountName: host_ls1
CN=Baker\, Alice,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: baker_alice
CN=IUSR_DC100,CN=Users,DC=busicorp,DC=local:
 sAMAccountName: IUSR_DC1
...

The following example illustrates how to query the RootDSE of an OpenLDAP server using the special +
attribute to retrieve otherwise hidden attributes.

C:\>java -cp jespa-2.0.0 jespa.ldap.LdapSearch -d RFC2251 'ldap://192.168.44.110/?*,+'

For other examples of LDAP URLs, see the LdapSecurityProvider API documentation.

Providing NTLM Services without Active Directory
With a set of usernames and plaintext passwords, Jespa can act as it's own domain authority and validate
NTLM credentials submitted by clients. From the perspective of clients (like browsers), this method is identical to
authenticating with Active Directory. Jespa is simply computing the correct NTLM response with the plaintext
password and comparing it byte-for-byte with the client supplied response. The highest level of security is
negotiated just as it would with AD. All of this is completely transparent to clients.

The HttpSecurityFilter, SaslServer, JAAS LoginModule and other service components support a
provider.classname property that allows the operator to specify the security provider that should be used
without changing any code. The jespa.ntlm.NtlmSecurityProvider uses the NETLOGON service and requires a
Computer account. However, you can extend the NtlmSecurityProvider class and install it with the
provider.classname property to validate credentials using an alternative source of plaintext passwords.
Reasons for doing this might include:

● You are using a local isolated database of passwords and do not need to validate credentials with AD

● You are only developing the application and do not yet need to actively validate credentials with AD

● You do not currently have permission to create the Computer account in AD

The MyNtlmSecurityProvider Example

Jespa includes a jespa.examples.MyNtlmSecurityProvider class that validates credentials with a single set of
credentials supplied as properties. The source code to this class is located at
src/jespa/examples/MyNtlmSecurityProvider.java. This minimal example is intended to illustrate
precisely how to create a custom NTLM security provider that acts as an AD domain authority.

The MyNtlmSecurityProvider class is an example but it is also fully functional and may be used with most of the
aforementioned services such as the HttpSecurityFilter, SaslServer, etc by simply setting the
provider.classname to "jespa.examples.MyNtlmSecurityProvider" and then setting properties
"jespa.domain.dns.name", "jespa.domain.netbios.name", "jespa.my.username" and "jespa.my.password" to
match the acceptable credentials.

Copyright © IOPLEX Software
http://www.ioplex.com/

37

Appendix A: How to Collect Diagnostic Information
If you are experiencing a issue with Jespa, IOPLEX Software support will likely ask for diagnostic information in
the form of at least a Jespa log file (and possibly a network packet capture file).

Collecting a Complete Jespa Log File

To acquire a Jespa log file, set the following properties in your Jespa properties file:

jepsa.log.level = 4
jespa.log.path = /path/to/jespa.log

If the path was added or changed, you may need to restart the web app (or app server) for the change to be
recognized.

Now trigger the behavior or error of interest and send the Jespa log file to IOPLEX support as an email
attachment. Preferably try to include the security provider properties which are logged when the webapp is first
initialized. You may wish to globally search and replace all instances of hostnames and IP addresses or other
information that you think might be sensitive. Passwords are not logged (the password.encrypted fields use a
random key that changes each time Jespa is initialized). If the file is larger than a few MB, compress it into a
regular .zip first.

Obtaining a Network Packet Capture

Some issues cannot be diagnosed from a log file only. In some instances IOPLEX support may ask for a
network packet capture.

If you are using Linux, the most efficient tool for capturing network traffic is tcpdump. Start a capture as root
using a command like the following:

tcpdump -s 0 -w jespa.pcap ! port ssh

Perform the operation you wish to capture, such as visiting your Jespa protected website, and then press Ctrl-C
to stop the capture. A jespa.pcap file should be created in the current directory.

To obtain a packet capture on Windows, you can use the free WireShark application or any of several other
capture utilities for Windows.

WireShark is a separate application that must be downloaded and installed from a third-party website but it has
advanced features and a UI that will allow you to visually navigate and filter network traffic. For Windows, simply
download and install the package from the WireShark website:

 https://www.wireshark.org/

WireShark is a standard package on most Linux distributions.

To obtain a capture using WireShark, run it as Administrator or root and select Capture > Start, trigger the
communication of interest and then select Capture > Stop. Finally select File > Save As ..., select the file type of
"Wireshark/tcpdump... - libpcap" and save the file with a .pcap extension. Send the resulting .pcap file to
IOPLEX support.

Note: You must run the capture software on the machine sending and receiving the communication of interest. For
example, if you wish to capture communication between a web server using the HttpSecurityService and an Active
Directory server, you will need to run your capture on the web server (for production systems, using tcpdump or netsh on
Windows may be more appropriate as opposed to installing WireShark).

Note: If you are asked to capture communication between Jespa and an Active Directory domain controller, you may
need to set the property jespa.netlogon.useSealing = false so that the NETLOGON communication is not
encrypted.

Copyright © IOPLEX Software
http://www.ioplex.com/

38

Note: It is preferred that the capture only be allowed to run for the shortest time possible so as to isolate the traffic of
interest. Similarly it is preferred that other programs are not running (or at least not generating traffic) while the network
capture is running.

Ideally, you should collect a log file and a corresponding packet capture simultaneously so that the information
in the log can be correlated with data in the capture. This will provide IOPLEX support with the most
comprehensive diagnostic information possible.

Note: If you are trying to diagnose an undesirable change in behavior between two versions of Jespa, you can also obtain
two sets of captures and logs - one of Jespa working and one of Jespa failing and send all four (4) files as attachments to
support@ioplex.com with your explanation of the problem.

Copyright © IOPLEX Software
http://www.ioplex.com/

39

	Requirements
	Validating NTLM Credentials with the NETLOGON Service
	NETLOGON and lsarpc Port Requirements

	Proxying and Load Balancing NTLM SSO with NGINX
	Proxying and Forwarding
	Load Balancing

	DNS Requirements and Properties
	Active Directory Sites and Services
	DNS Properties
	The DNS Records File

	Installation
	Step 1: Create the Computer Account in AD DS
	Alternative Step 1: Creating a Computer Account Manually
	Setting the Password Manually using PowerShell
	Setting the Password Manually using the SetComputerPassword.vbs Script

	Step 2: Test the Computer account with the Example Webapp
	Step 3. Copy Jespa Into Your Application Files

	Upgrading
	Activating the Jespa Jar File
	Validating the Activation Key of a Jespa Jar File

	The HttpSecurityService and HttpSecurityFilter
	HttpSecurityService Mechanisms
	HttpSecurityService Properties
	An Example web.xml File
	Requirements and Windows Settings for Single Sign-On (SSO)
	Internet Options and the Local Intranet Zone
	The Fallback Location
	The Excludes List
	SPN and Channel Bindings (EPA)
	Installation Step 5: Change SPN and Channel Bindings Policy
	Installation Step 6: Set Channel Bindings Keystore or PEM Properties
	HTTP Form Based Logins
	Logging Out
	Anonymous Access
	Windows Group Based Access Control
	NtlmSecurityProvider Access Control
	LdapSecurityProvider Access Control

	Customizing the HttpSecurityService

	The NtlmSecurityProvider
	NtlmSecurityProvider Properties
	MSRPC TCP Transport Properties

	The LdapSecurityProvider
	LdapSecurityProvider Properties

	The ChainSecurityProvider
	The HTTP Client
	Using NTLM Authentication with the HTTP Client

	The SASL Client and Server
	Using NTLM Security with JNDI / LDAP

	The LoginModule
	Possible Issues
	Issue 1: The "jespa.http.HttpException: 401 Unauthorized" exception
	Issue 2: The "Not a Type 1 Message" exception
	Clients Other than Browsers

	Issue 3: The browser will not perform automatic authentication (SSO)
	Issue 4: The "SAM database ... does not have a computer account" exception
	Issue 5: The "format of the specified computer name is invalid" exception
	Issue 6: Windows SID based access control does not work as expected
	Issue 7: The "page cannot be displayed" error using the HttpSecurityService
	Issue 8: The "Failed to locate authority for name: EXAMPLE" error
	Issue 9: POST data is not submitted when using the HttpSecurityService
	Issue 10: The "Login failure: unknown user name or bad password" exception
	Issue 11: The "account used is a Computer Account" exception
	Issue 12: The "NetrLogonSamLogon return authenticator check failed" exception
	Issue 13: The “java.lang.NoClassDefFoundError: jcifs/smb/...” exception
	Issue 14: The “jespa.util.NtException: Access is denied.” exception
	Issue 15: The “jespa.util.NtException: 0xC0000418” exception
	Issue 16: SPN BINDINGS FAILURE and CHANNEL BINDINGS FAILURE Errors

	Example Code
	The MyHttpSecurityFilter Example
	Setting the MyHttpSecurityFilter Encrypted Password

	The LdapSearch Utility
	LdapSearch Command Examples

	Providing NTLM Services without Active Directory
	The MyNtlmSecurityProvider Example

	Appendix A: How to Collect Diagnostic Information
	Collecting a Complete Jespa Log File
	Obtaining a Network Packet Capture

